
Contrib Mineral Petrol (1983) 84:107-145 
Contributions to 
Mineralogy and 
Petrology 
 9 Springer-Verlag 1983 

The Gibbs Free Energy of mixing of natural silicate liquids; 
an expanded regular solution approximation for the calculation 
of magmatic intensive variables 
Mark S. Ghiorso 1, Ian S.E. Carmichael 2, Mark L. Rivers 2, and Richard O. Sack 2'3 
t Department of Geological Sciences, University of Washington, Seattle, WA, 98195 and the Lawrence Berkeley Laboratory, 
University of California, Berkeley, CA, 94720, USA 
2 Department of Geology and Geophysics and the Lawrence Berkeley Laboratory, University of California, 
Berkeley, CA, 94720, USA 

Abstract. The compositions of liquids coexisting with 
experimentally grown crystals of olivine, plagioclase, 
clinopyroxene, orthopyroxene, leucite, spinel, rhombo- 
hedral oxide, melilite and potassium feldspar are used to 
define, through mass action expressions of liquid/solid 
equilibrium, compositional derivatives of the Gibbs free 
energy of mixing of naturally occuring silicate liquids 
as a function of temperature, pressure and the fugacity 
of oxygen. The available experimental data describe 
these derivatives over a range of compositions which 
includes basic magmas. Therefore, for silicate liquids in 
this composition range, the topology of the Gibbs free 
energy of mixing can be approximated from experimen- 
tal determinations of its derivatives. The majority of the 
existing thermodynamic data on the liquid phase is 
consistent with the application of regular solution 
theory to model the free energy of mixing. Strictly 
symmetric, temperature and pressure independent, reg- 
ular solution interaction parameters are calibrated 
from this phase equilibrium data using regression tech- 
niques which have their basis in inverse theory. These 
techniques generate numerically stable interaction pa- 
rameters which incorporate inter-variable correlation 
and account for experimental uncertainty. The regular 
solution model fits the available data on anhydrous 
silicate liquids to within the accuracy of the thermody- 
namic database ( + / - 5 5 0  cals). Extensions to regular 
solution theory allow water solubility in more silica 
rich liquids to be modelled somewhat less accurately 
( + / - 7 5 0  cals). 

The topology of the excess free energy of mixing 
surface is strongly asymmetric, possessing a single mul- 
ticomponent saddle point which defines a spinodal lo- 
cus. Given this prediction of a multicomponent spi- 
node, a mathematical procedure based upon minimi- 
sation of the Gibbs free energy of mixing is developed 
for the calculation of the compositions of coexisting 
immiscible liquids. Predicted binodal compositions sub- 
stantially agree with elemental liquid/liquid partitioning 
trends observed in lavas. Calculations suggest that an 
immiscible dome, in temperature-composition space, in- 
tersects the liquidus field of the magma type tholeiite. 
Immiscible phenomena are predicted at sub-liquidus 
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temperatures for the bulk compositions of more basic 
or alkalic lavas, but are absent in more siliceous rock 
types for temperatures of the metastable liquid down to 
900 K. 

The regular solution model is used in four pet- 
rological applications. The first concerns a prediction of 
the binary olivine-liquid phase diagram. The calculated 
geometry exhibits a minimum near FAT5, which, 
though not in accord with experimental results on the 
pseudobinary system, compares quite favorably with 
olivine-liquid phase equilibria interpreted from rhyo- 
lites, namely that the olivine phenocrysts of rhyolites 
are more iron rich than their coexisting liquids. The 
second petrological example concerns estimating the 
depth of the source regions of several basic lavas whose 
compositions cover a range from ugandite to basaltic 
andesite. The third application is a calculation of the 
saturation temperatures and compositions of plagio- 
clase and olivine in four experimental basaltic liquids 
and a prediction of the liquidus temperatures and first 
phenocryst compositions of the Thingmuli lava series of 
Eastern Iceland. Lastly, enthalpies of fusion are com- 
puted for a variety of stoichiometric compounds of 
geologic interest. These demonstrate good agreement 
with calorimetrically measured quantities. 

Introduction 
Magmatic processes such as differentiation, assimilation 
and fractionation are fundamental concepts in the in- 
terpretation of the origin and cooling history of igneous 
rocks. The compositions of coexisting minerals and, in 
the case of volcanic rocks, glass, provide evidence for 
these phenomena, documenting changes in thermody- 
namic intensive variables (T, P and chemical potentials) 
as the rock crystallized and later cooled below the 
solidus. The interpretation of these compositional re- 
lationships is a complicated problem which petrologists 
have attempted to tackle in three ways: 1) simplifi- 
cation, through the use of phase diagrams, 2) experi- 
mentation, usually in the form of the determination of 
equilibrium phase relations in naturally occuring com- 
positions, and 3) extrapolation and approximation 
using thermodynamic data and modelling. 

The projection of multicomponent compositional 
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trends into two-, three- or four-component phase dia- 
grams is an attempt to simplify igneous phase relations 
m such a manner that the salient concepts can be 
appreciated graphically. This visual approach comes at 
the expense of ignoring certain compositional variables, 
and as such phase diagrams cannot uniquely or com- 
pletely interpret multicomponent compositional trends 
in igneous liquids. 

Melting and crystal growth experiments on igneous 
rocks constitute a direct and purely empirical approach 
to the study of igneous phase relations. The basic data 
provided by these experiments suffers from one serious 
limitation; it pertains specifically to the narrow com- 
positional space spanned by the rock types investigated. 
What is lacking in this approach is the ability to extra- 
polate to all igneous rocks the phase relations gleaned 
from a limited study of just a few. To do so one must 
know the physiochemical properties of the phases in- 
volved. In particular, the thermodynamic functions of 
the minerals of igneous rocks and the liquids from 
which they were derived must be characterized. 

All attempts to quantitatively understand igneous 
phase relations incorporate efforts to describe the com- 
positions of those solid and liquid phases which define 
the minimum total Gibbs free energy of the system at a 
particular temperature, pressure and bulk composition. 
It follows that efforts to numerically simulate equilib- 
rium crystallization in igneous systems should, to a 
large degree, have a thermodynamic basis. This be- 
comes evident when empirical or "statistical" ap- 
proaches to computing mineral/melt equilibria are criti- 
cally examined. For example, the multivariate linear 
regression approach taken by French (1971), Hostetler 
and Drake (1980) and French and Cameron (1981) ade- 
quately expresses certain mineral/melt equilibria, but 
fails to provide any insight into phenomena such as 
liquid immiscibility or the crystallization of a mineral 
phase not used in the calibration of their models. To be 
fair, these empirical procedures were not meant to pro- 
vide such information, but a liquid/solid model which 
is thermodynamically based has the potential to make 
predictions considerably beyond its database. This is 
because the crystallization temperatures and liquidus 
compositions of all igneous minerals as well as the 
compositions of any coexisting immiscible liquids are 
all dependent upon the Gibbs free energy of the liquid. 
A thermodynamic formulation which is calibrated upon 
enough data to approximate the shape of the Gibbs 
free energy in temperature, pressure and composition 
space, has the potential to predict all the equilibrium 
properties of the system. 

The most serious difficulty that has been encoun- 
tered in defining a Gibbs free energy function for ig- 
neous systems concerns modelling the thermodynamic 
solution properties of natural silicate liquids. Micro- 
scopic approaches based upon statistical mechanical 
consideration of structural models involving cation as- 
sociation and polymerization (Toop and Samis 1962; 
Masson 1968; Hess 1971, 1980) have met with limited 
success, due primarily to the paucity and contradictory 
nature of the available data (see Bottinga et al. 1981 or 
Gaskell 1982 for a recent review). In addition, such 
models have been tested and calibrated on two- and 
three-component silica-metal oxide systems, and their 

success in predicting the behavior of multicomponent 
natural silicate liquids is largely qualitative. Moreover, 
any structural or lattice model for the thermodynamic 
properties of the liquid makes certain assumptions 
about the extent of long range order in solution. Thus, 
"although lattice models have occasionally suggested 
forms of equations that were useful empirically for liquid 
systems, this empirical success did not establish the 
correctness of the model. Indeed, alternate models fre- 
quently lead to the same expression for a thermody- 
namic property of a complex liquid" (Pitzer 1981). 

Macroscopic formulations of the Gibbs free energy 
of silicate liquids (Nicholls and Carmichael 1972; Bar- 
ron 1972; Carmichael etal. 1977; Bottinga and Richet 
1978; Mukherjee and Bhattacharya 1980; Barron 1981) 
have suffered from incomplete characterization of the 
thermodynamic properties of end-member components 
and compositionally restricted experimental data neces- 
sary to the definition of solution properties. Despite 
these limitations the work of Ghiorso and Carmichael 
(1980) has been quite successful in accounting for ig- 
neous phase relations involving olivine and plagioclase 
in basaltic liquids. This was due primarily to two fac- 
tors: 1) The available experimental data on the thermo- 
dynamic properties of multicomponent silicate liquids 
(c.f. Carmichael etal. 1977; Nelson and Carmichael 
1979), coupled with consideration of natural phenom- 
ena such as immiscibility, allowed the adoption of a 
very simple thermodynamic model for the liquid, and 2) 
The approach treated seventeen variables simul- 
taneously and utilized twenty-one liquid component in- 
teractions in assessing olivine- and plagioclase-liquid 
phase relations as a function of T and P. In applying 
the regular solution model of Ghiorso and Carmichael 
(1980) however, several limitations have become ap- 
parent. Firstly, the model contains no mechanism for 
defining ferric/ferrous equilibria as a function of oxygen 
fugacity. Secondly, it was calibrated from a relatively 
small number of experimental data, which for the most 
part reflect phase relations in basalts. The calibration 
procedure was implemented by stepwise linear re- 
gression of the binary regular solution interaction pa- 
rameters from mass action expressions describing four 
compositional derivatives of the free energy of mixing 
surface (i.e. CaA12SizO 8, NaA1Si3Os, Mg2SiO 4 and 
Fe2SiO4). Subsequent computations have revealed that 
this least squares technique is not the best method of 
accounting for correlations between the interaction pa- 
rameters, since the inherent numerical instability in the 
parameter values distorts the actual shape of the free 
energy of mixing surface. Thus compositional deri- 
vatives in directions other than those used for calibra- 
tion may be incorrectly computed. In petrological 
terms this means that phase relations for minerals other 
than olivine and plagioclase in basalts and mineral 
stabilities in non-basaltic liquids, as well as compo- 
sitions of coexisting immiscible liquids, may not be 
correctly predicted by the Ghiorso and Carmichael 
(1980) model. 

The purpose of the present paper is to expand the 
scope of the thermodynamic model of Ghiorso and 
Carmichael (1980) to 1) cover a much broader com- 
positional range of silicate liquids, essentially including 
all basic lavas, 2) utilize as many phases as possible in 
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calibrating the free energy of mixing surface - thereby 
more accurately describing its topology, 3) perform this 
calculation using regression techniques which explicitly 
account for parameter correlation and generate values 
for these parameters which are numerically stable to 
minor perturbations in the database, 4) utilize the em- 
pirical expressions of Sack et al. (1981) to account for 
ferrous/ferric equilibria as a function of oxygen fugacity 
and 5) demonstrate these improvements by calculating 
liquid immiscibility and phase stabilities of clino- and 
orthopyroxenes, olivines and plagioclases in lavas of 
widely varying composition. 

It is not our intention to produce a comprehensive 
model for silicate liquids that is capable of calculating 
the thermodynamic properties of all intermediate com- 
positions from the simple two-component systems to that 
of basalt. We are concerned here with approximating 
the Gibbs free energy surface only in that small fraction 
of the total compositional volume occupied by na- 
turally occuring liquids. It is a simple matter to calcu- 
late just how restricted this volume fraction is. If we 
consider the eleven oxides which describe the major 
element compositions of igneous rocks 1 and recast 
bulk wt. % analyses into mole fractions of these oxides, 
the volume fraction which natural liquids occupy in 
this eleven component space is on the order of 10 - l~  
Now a great deal of experimental data are available 
within this restricted "natural liquid" volume as is the case 
for many of the two- or three-component constituent 
sub-systems, but certainly phase diagrams for all 55 
binaries have not been determined let alone all 165 
ternaries. It might be argued that the appropriate pe- 
trological simple phase diagrams have been determined 
for this space, however the relevance of the equilibrium 
relations gleaned from a study of these simple systems 
is uncertain. One need only consider the dissimilarity of 
the phase relations depicted in the system NaA1Si30 s 
-CaA12Si20 s compared with plagioclase liquid re- 
lations found in synthetic liquids saturated with diop- 
side and plagioclase (Morse 1980, p. 93) or plagioclase 
liquid relations derived from experiments on basaltic 
liquids, to recognise this discrepancy. Alternatively, the 
phase relations in the system Mg2SiO4-Fe2SiO 4 pre- 
dict that all olivines should be more Mg-rich (higher 
Mg/(Mg+Fe)  ratio) than the liquids from which they 
crystallize, but the exact opposite is observed in study- 
ing the fayalitic olivines of rhyolitic liquids (Carmichael 
1967a). Unfortunately, there is a compositional gulf in 
the experimental data on silicate liquids which lies be- 
tween simple systems and magmas, across which the 
thermodynamic properties of the liquid change in in- 
teresting and mysterious ways. A thermodynamic mod- 
el for the liquid that successfully reproduces the phase 
relations in the simple systems as well as magmas must 
bridge this gulf, and in our opinion, would probably be 
very complex. However, it is our contention that much 
simpler formulations may be applicable over suf- 
ficiently small fractions of the total composition space, 
much in the same way that the shape of a complex 
curve can be locally approximated by a simple poly- 
nomial. In the next section we will produce arguments 

1 SiO2, TiO2, A1203, Fe203, FeO, MnO, MgO, CaO, Na20, 
K.20, P205 

to justify this contention for that portion of the total 
composition space occupied by natural silicate liquids. 
We remark finally that as our interest in the thermody- 
namic properties of silicate liquids is motivated by pe- 
trological problems, we have confined our attention to 
experimental phase relations in multicomponent, na- 
tural silicate liquids with the aim of restricting the 
applicability of our thermodynamic modelling to mag- 
mas. 

Basic thermodynamic expressions 
The total Gibbs free energy, G, of a heterogeneous 
mixture of solid and liquid phases, say coexisting pheno- 
crysts and silicate liquid, can be written: 
G = G (liquid) q- G (s~ (1) 

where G 0iquia) represents the Gibbs free energy of the 
liquid and G (s~ that of the solid. Specifying n thermo- 
dynamic components indexed on i and symbolized by 
n i to describe the composition of the liquid, we may 
write: 

a(liquid) ~ 0 --  = ~i Y/i t f'mix(/. (2) 
i=1 

where #o is the standard state chemical potential of the 
ith component and G mix is the Gibbs free energy of 
mixing in the liquid relative to the standard state. The 
standard state convention is chosen here to be unit 
activity for all pure substances at any temperature and 
pressure. As we have indicated in the introduction the 
crux of the problem is to find an expression for 
G mix" G mix can be written: 

a mix = G ideal -[- a . . . . . .  (3) 

where from elementary solution theory we have 

G ideal = N R T  ~ X i lnX i. (4) 
i - 1  

Here N is the sum of all hi, R is the universal gas 
constant, T the absolute temperature and X i denotes 
component mole fractions (Xi=ni/N). From Eqs. (3) 
and (4) we may write 

wmix= (~Gmix) 
t~P-/r . . . .  position 

= t ~ / T  . . . .  position (5) 

where V mix is the volume of mixing in the liquid and 

[6~2 Gmix~ 

C~  aix = --  T t ~ T P  . . . .  position 

c . . . . . .  

= - - T  ~ ~ r 2  ] p  . . . .  position (6) 

where C~ ix is the heat capacity of mixing in the liquid. 
As was discussed at some length in our previous paper 
(Ghiorso and Carmichael 1980) there exists no experi- 
mental data on anhydrous silicate liquids of the range 
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in composit ion found in nature which indicates, within 
an estimated average two percent experimental uncer- 
tainty, finite values for V mix and r~mix a As far as V mix ~ p   9 
is concerned this statement can be extended to syn- 
thetic two- and three-component  systems (Ghiorso and 
Carmichael, in press) and mult icomponent  liquids con- 
taining substantial ferric iron and aluminum (Mo et al. 
1982) as well. Thus G ... . . .  must be pressure indepen- 
dent and any excess entropy of mixing must be tem- 
perature and pressure independent [i.e. 
- -  (~G . . . . . .  /~ T)p . . . .  position = constant]. The simplest form 
for G .. . . . .  consistent with these boundary conditions is 
to set it equal to zero, which is an at tempt to describe 
silicate liquids as ideal solutions. Phenomena such as 
liquid immiscibility and non-zero heats of mixing (c.f. 
Weill et al. 1980) however, necessitate a composit ional  
dependence of G .. . . . .  since these phenomena are gener- 
ated by non-ideal undulations in the total free energy 
of mixing surface for the liquid. A simple mathematical  
form for G .. . . . .  which is consistent with the available 
experimental data (Ghiorso and Carmichael 1980) is 
that of a regular solution. We may define: 

G . . . . . .  ]~d'l ~ ~ WijXiX j (7) 
i - l  j=1  

where the W~j are temperature/pressure independent bi- 
nary component  interaction parameters  which are sym- 
metric (W/.=W.i) and describe attractive or repulsive J J . 
forces between unhke molecules (W/i=0). 3 The  89 in 
Eq.(7) insures that the energy attributed to the in- 
teraction of each component  pair is counted only once 
in the sum. Thus from Eqs. (2), (3), (4) and (7) we have 

G(liquia)= ~ p~ + NRT ~ XilnXi 
i=1 i--1 

+N/2 ~ ~ Wi]XiX j. (8) 
i=1 j = l  

Since 

(~ G (liquid) ] 
~n~-ni ! T, P,,s = #i = go + R T in a i (9) 

where a~ is the activity of the ith component  in the 
liquid, from Eq. (8) we obtain 

( ~ G  liquid' ] 
(3n~/T,P,  nj =#0 ~_ R T l n X  i 

+ 
j = l  j = l  k = l  

2 It should be emphasized that these measurements have 
been done at lbar.  C~ 'ix and V mix may not be zero at 
elevated pressures 

3 Equation (7) contains only binary interaction parameters. 
Ternary and higher order interactions may also be specified 
as long as all are independent of temperature and pressure 
(i.e. V m~x and C~ '~ are still zero). The number of unknowns 
(W's) in the expression for G ...... rapidly increases as the 
higher order terms are added however (number 
=n!/[(terms)! (n-terms)!]), and in most practical appli- 
cations, the data necessary to define them is lacking. We 
will show later that this is the case for silicate liquids 

so that with ai~Xi~i ,  

RTln a i = R T l n  X i + R T l n  7i 

and 

R T l n T i =  ~ W~jXj- 89 ~ ~ VV~kXjX k. (10) 
j=l j=a k=l 

7i is the activity coefficient of the ith component  and 
RTln7i is the partial molar  excess free energy of the 
ith component.  In addition we can state the following 
equations, obtained by taking appropriate derivatives 
of Eq. (8), for the partial molar  entropy (s-i), volume (~.), 
enthalpy (h~) and heat capacity (Cp,) all consistent with 
Eq. (7): 
S(liq uid) ~ - - (~G( l iqu id ) )  _ 

~ T I p  . . . .  position--i=1 ~igli 

= ~ ~n i -NR ~ XilnXi, (11) 
i=1 i=1 

v(liqnid) = (~G(liquid) t .~_ 
\ 8P IT, composition i=1 U-ig/i 

= ~ ~ n  i, (12) 
i=1 

H(liquid) = G(liquid) q- ys(liquid) = ~ hi n~ 
i=1 

= ~ h~ i +N/2 ~ ~ WIjXiX,, (13) 
i=1 i~lj--1 

and 
f,(liquid) (~g(liquid) ) 

~ P  \ ~ Z /P, composition ~ i = 1 

= ~ @ini. (14) 
i=1 

Having postulated a mathematical  model for G (iiqoia) 
we must now specify a means of calibrating it using 
available thermodynamic data and experimental 
measurements on the compositions of coexisting solid/ 
liquid pairs. To see how this may be done let us con- 
sider a mineral, M, which coexists with a silicate liquid. 
M may be an end-member component  of a solid so- 
lution series or a pure mineral. One can write the 
equilibrium reaction: 

M = ~. V i C i (15) 
i=1 

solid liquid 

where C i are the actual components which describe the 
liquid's composition and the v~'s are the stoichiometric 
numbers of each of these components  in the mineral 
formula. The mass action expression corresponding to 
Eq. (15) is given by 

R Tin  K = ~ v iR Tin al liquid) - -  R T In a~/~ (16) 
i=a 

where K denotes an equilibrium constant and 
a(.~iqu~a, solia) the activity of the j th component  in the J 



liquid or the activity of M in the solid, respectively. 
Equation(16) can be rearranged and combined with 
Eq. (10) to yield: 

RTlnK + RTlna~t ~ ~ viRTlnXi 
i = 1  

= ~vi ~ WijXj- 89 ~vi ~ ~ VV~kX~X k. (17) 
i = 1  j = l  i = 1  j = l  k = l  

Equation (17) is only valid in so far as regular 
solution theory describes the excess free energy of the 
liquid. This has not been experimentally established for 
silicate melts containing water. In Appendix 3 we re- 
view the experimental data on water solubility in si- 
licate melts and postulate an extended form of Eq. (17), 
Eqs. (A3-15) and (A3-16), applicable to hydrous liquids. 

The quantities on the left hand side of Eq. (17) can 
be calculated from the compositions of coexisting solids 
and liquids equilibrated at a given temperature and 
pressure. It should be noted that each end-member 
component in each solid-solution phase that coexists 
with the liquid at a given T and P will give rise to one 
statement of Eq. (17). We shall refer to these measure- 
ments of solid/liquid equilibria as the experimental da- 
tabase. Its construction and scope will be discussed in 
some detail below. In addition, to calculate a specific 
R TlnK we must know the standard state chemical 
potential of M and those of the appropriate liquid 
components at the temperature and pressure of interest, 
since 

RTlnK=# ~  ~ v,# ~ (18) 
i = 1  

The construction of the thermodynamic database which 
allows the evaluation of Eq. (18) at appropriate P's and 
T's is discussed below and in Appendix 1. The evalua- 
tion of R Tlna(~ ~ requires knowledge of activity/com- 
position relations within solid phases of experimental 
interest (plagioclases, olivines, pyroxenes, etc.). Such re- 
lations are mentioned below and discussed in some 
detail in Appendix 2. Finally, to specify the various Xi~ 

Table l. 
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some decision must be made concerning the choice of 
thermodynamic components. Given that the necessary 
data can be assembled the only unknowns which re- 
main in Eq.(17) are the regular solution binary in- 
teraction parameters, the Wjk's. Given a sufficiently 
large "experimental database" which is to say a suf- 
ficiently large number of statements of Eq.(17), the 
values of the W~j become overdetermined and may be 
approximated by some numerical procedure such as 
least squares. The details of the calibration of the W~j's 
in Eq. (17) are discussed in Appendix4. The important 
aspect to keep in mind is that they are defined from 
experimental data on coexisting solid/liquid pairs. Once 
calibrated, these interaction parameters describe, 
through Eqs. (3), (4) and (7) the free energy of mixing. 
This G mix is a local approximation to the experimental 
database and is consistent with the available solid/ 
liquid thermodynamic data. The calibration defines the 
shape of a multidimensional (multicomponent) hyper- 
surface by specifying as many determinations of the 
derivatives (through Eq. 17) of this surface as possible. 
Once this hypersurface is defined its undulations can be 
used to predict liquid immiscibility and, when com- 
bined with thermodynamic data for the solids, mineral 
stabilities as a function of temperature and pressure. 
We proceed now to a more detailed discussion of the 
construction of the "experimental database" and other 
thermodynamic quantities necessary for the evaluation 
of Eq. (17). 

Experimental database 

The experimental database used to calibrate the in- 
teraction parameters (W~j) through Eq. (17) is indi- 
cated in Tables 1 through 3. Table 1 consists entirely of 
references to data from the literature and substantially 
includes the original olivine-liquid, plagioclase-liquid 
anhydrous database of Ghiorso and Carmichael (1980). 
We have indicated in Table 1 the pressure and temper- 
ature range of the data as well as the number of cases 
or statements of mineral-solution equilibria (Eq. 17) 

Anhydrous Data Number in each category 

Experiment P (kbrs) T (K) Cases pl ol opx cpx sp lc rhm reel ksp qtz 

Bender et al. 1978 (MORB) 0.001 1,478-1,541 34 
8-15 1,513-1,613 18 
2 1,223 1 
3 1,198 1 
0.001 1,33~1,619 197 
0.001 1,344-1,623 42 
0.001 1,427-1,579 32 

10-20 1,523-1,723 38 
14 1,543-1,548 16 

5 12 
2 6 1 

Carmichael 1960 (Rhyolite) t 
Carmichael 1962 (Pantellerite) 1 1 
Grove et al. 1982 (Basaltic Andesite) 45 38 8 1 
Leeman 1974 (Basalt) 8 13 
Roeder 1974 (Basalt) 16 
Stolper 1980 (Tholeiite) 8 5 
Takahashi 1980 (Alkali-Olivine 2 3 

Basalt) 
Thompson 1974, 1975 (Basalt) 8-12 1,398-1,498 14 7 
Walker et al. 1979 (MORB) 0.001 1,379-1,498 44 14 8 

Total (including Table 2) 1,168 123 215 21 84 61 42 8 2 1 
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Table 2. Analyses of lavas used for solid-liquid experiments by Sack. The phases encountered (without temperature or composition 

T K  

Leucite Basanite Andesite Basanite 
basanite (Colima) (Colima) (San 
(Vesuvius) Quintin) 

94-8 94-18 501 7E Co1-11 CSQ-3 
1,433 1,389- 1,365.5--1,337- 1,418- 1,365.5- 

1,418 1,574 1 ,603 1,476 1,543 

High Trachy- Leucite basanite 
alumina basalt (Korath Range) 
basalt 

HC-63 253 K-8 K-15 K-14 
1,410- 1,406- 1,365.5-1,507 
1,508 1,508 

Alkali olivine Ugandite 
basalt 

SSC-1 SSC-2 U-50 U-105 U - I l l  U-150 
1,365.5-1,507 1,394-1,507 

SiO 2 
TiO2 
A1203 
Fe203 
FeO 
MnO 
MgO 
CaO 
Na20 
K20 
P205 
H2 O+ 
H20 - 
Rest 

47.84 48.16 49.48 48.20 56.55 46.58 
1.24 0.98 1.60 1.64 0.78 2.41 

17.90 15.20 13.51 11.62 16.63 15.08 
1.88 3.03 2.84 4.22 1.46 2.09 
6.21 4.56 5.36 3.27 5.23 8.60 
0.17 0.14 0.15 0.11 0.11 0.19 
3.87 6.34 9.80 11.81 5.94 9.42 
8.68 11.37 9.07 8.32 7.75 8.86 
2.78 2.23 2.97 3.28 4.03 3.42 
7.43 5.94 3.69 3.58 1.06 1.51 
0.92 0.78 0.99 1.32 0.20 0.52 
0.43 0.45 0.45 1.59 0.15 0.35 
0.02 0.05 0.29 0.37 0.05 0.04 
0.61 0.67 0.33 

48.46 47 .41  43.52 48.50 45.51 45.81 45.70 40.52 36.71 43.48 39.43 
1.07 2.13 2.45 1.49 2.10 2.44 1.98 5.28 5.54 4.50 4.73 

17.39 15 .78  15.76 18.86 16.93 15.01 13.59 8.17 9.30 9.75 8.07 
1.76 2.18 2.82 2.78 2.30 2.13 2.68 6.33 9.44 8.64 10.09 
7.97 7.87 7.14 5.74 6.43 8.83 7.29 6.29 4.24 3.78 2.04 
0.18 0.18 0.16 0.22 0.19 0.10 0.18 0.21 0.26 0.16 0.22 
8.64 8.04 9.57 3.28 7.06 8.33 11.45 11.57 6.34 8.83 9.52 

11.10 8.75 12.28 8.26 10.72 11.75 12.42 12.55 14.08 11.81 13.97 
2.80 3.73 3.02 5 .85  4.09 3 .01  2.74 2.50 2.40 2.86 1.16 
0.22 1.72 1.43 3 .01  2.18 1.04 1 . 0 5  3.75 6.05 4.65 6.44 
0.12 0.55 0.41 0.45 0.48 0.65 0.39 0.44 1 .11  0.66 0.86 
0.07 0.58 0.83 0 .81  1 .13  0 . 4 1  0.37 1.31 1.82 0.23 1.11 
0.08 0.28 0.24 0.16 0.22 0.07 0.03 0.40 0.42 0.17 1.08 

0.10 0.09 0 .11  0.35 0.41 1 .30  0.69 0.78 

Total 
(experi- 
ments/ 
cases) 
Phases 
found 
with 
liquid 
(number) 

99.98 
(2/7) 

Oliv 
(2) 

Spin 
(1) 
Leuc 
(2) 

100.00 100.20 99.33 99.94 99.40 
(5/37) (14/35) (9/37) (5/18) (10/42) 

Oliv Oliv Oliv 
(5) (12) (9) 
Plag Plag 
(5) (3) 
Spin Spin Spin 
(1) (1) (3) 
Leuc Leuc Leuc 
(11) (2) (1) 
Cpx Cpx Cpx 
(1) (1) (1) 

Kspar 
(1) 

Oliv 
(5) 
Plag 
(2) 

Opx 
(a) 

99.86 100.30 99.72 99.52 99.69 99.58 99.87 99.73 99.60 100.21 99.49 
(4/10) (6/26) (13/92) (7/40) (20/131) 

Oliv Oliv Oliv Oliv Oliv 
(10) (2) (6) (14) (6) 
Plag Plag Plag Plag Plag 
(5) (1) (5) (10) (5) 
Spin Spin Spin Spin Spin 
(2) (1) (1) (8) (4) 

Cpx Cpx Cpx Cpx 
(1) (1) (9) (1) 

Ilm 
(2) 

Ilm 
(1) 

Oliv 
(16) 

Spin 
(17) 
Leuc 
(11) 
Cpx 
(21) 

they genera ted  and  how these were d i s t r ibu ted  amongs t  
the  mine ra l  phases  found in each exper iment .  A cri t ical  
var iab le  tha t  d ic t a t ed  inc lus ion in the d a t a b a s e  was 
knowledge  of the fugaci ty  of oxygen,  since all  bulk  
l iquid  analyses  were  cor rec ted  to have the a p p r o p r i a t e  
ferrous/ferr ic  ra t io  at  the  t e m p e r a t u r e  of  in teres t  using 
the equa t ions  of  Sack et al. (1981). Thus  the  exper imen-  
tal  work  of  G r e e n  e ta l .  (1979) and D r a k e  (1972) ~ was 
excluded;  in add i t i on  the  absence  of  a lkal i  de te rmi-  
na t ions  on  some  lunar  l iquids (Longhi  et al. 1978) and 
the large uncer t a in ty  in N a 2 0  concen t r a t i on  (Mysen 
and  K u s h i r o  1977) e l imina ted  others.  L iquids  which  

4 Drake's (1972) experiments in the Fe absent simple system 
A b -  A n -  Di were not considered 

were d o p e d  with  C o O  and N i O  (Takahash i  1978) were 
also excluded,  as the high concen t ra t ions  of  Co2SiO 4 
and  Ni2SiO 4 in the assoc ia ted  olivines p rec luded  the 
use of  the  ac t iv i ty / compos i t i on  re la t ions  a d o p t e d  for 
the F % S i O  4 and  Mg2SiO 4 ol ivine c o m p o n e n t s  (see Ap-  
pendix  2). To those  da t a  of G h i o r s o  and  Ca rmichae l  
r ema in ing  have been  a d d e d  the more  recent  work  of 
G r o v e  et al. (1982), S to lper  (1980) and T a k a h a s h i  
(1980). W e  have also rejected all exper imenta l  results  at 
oxygen fugacities subs tan t ia l ly  h igher  than  the  hemat i -  
t e -magne t i t e  buffer. 

W h a t  was charac ter i s t ic  of the G h i o r s o  and  Car-  
michae l  (1980) da t abase  and  is still t rue of  the  experi-  
ments  ind ica ted  in Tab le  1, is tha t  the l iquids  repre-  
sented are essent ial ly  basal t ic .  In  the  need to expand  
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Leucite melilite Nephelinite Etindite Melilite 
(Congo) (Congo) (Cameroun, leucitite 

West 
Africa) 

20424 2 0 4 2 1  RG69010 X-973 96-6 
t,337-1,474 1,389- 1,365.5 1,394- 

1,474 1,422 1,566 

Melilite 
leucitite 
(Rome) 

90-05 
1,474- 
1,603 

Tholeiite Tholeiite Tholeiite Andesite 
(FAMOUS) (Puerto (Whin 

Rico sill 
Trench) 

FG PRT WS 766-70 
1,41(~ 1,365.5- 1,365.5 1,574 
1,543 1,476 1,418 

X23 
1,398 

Totals 

35.32 46.91 39.31 38.76 42.80 54.47 
2.68 1.10 2.51 4.42 0.96 0.53 

12.31 20.91 17.46 13.96 15.36 20.73 
8.81 2.99 1.35 5.97 4.61 2.28 
2.78 3.26 9.37 6.34 3.97 1.46 
0.34 0.20 0.26 0.27 0.18 0.19 
5.13 1.28 3.55 5.88 4.34 0.74 

16.13 4.33 10.40 14.08 12.22 3.24 
4.65 6.90 6.75 4.42 2.84 4.37 
4.43 9.15 6.56 2.55 9.79 10.18 
1.63 0.41 1.18 1.22 0.48 0.13 
1.47 0.86 0.30 0.74 1.78 0.43 
0.33 0.30 0.16 0.17 0.35 
3.75 1.05 0.88 0.77 0.68 0.68 

48.45 52.48 51.73 65.67 
0.75 2.18 2.49 0.42 

15.30 15.92 13.82 17.52 
1.28 1.54 2.04 1.14 
9.00 8.55 10.49 2.05 
0.16 0.09 0.21 0.06 

10.25 6.85 5.67 1.96 
11.82 7.43 9.51 5.38 
2.24 4.25 2.65 4.52 
0.26 0.73 0.96 1.12 
0.16 0.24 0.32 0.11 

0.00 
0.03 

0.06 0.06 0.06 

99.76 99.65 
(9/69) 

99.88 99.54 100.17 99.78 
(3/39) (5/34) (6/23) (4/4) 

99.73 100.33 99.97 99.98 

(5/20) (6/28) (6/34) (1/2) (1/6) (734) 

Plag 
(l) 

Spin Spin Spin Spin 
(7) (6) (3) (3) 
Leuc Leuc Leuc 
(5) (1) (5) 
Cpx Cpx Cpx Cpx 
(17) (7) (10) (5) 

Melil 
(2) 

Leuc 
(4) 

Oliv Oliv Oliv Oliv 
(5) (6) (6) (1) 
Plag Plag Plag Plag 
(2) (4) (4) (1) 

Spin Spin 
(1) (2) 

Cpx Cpx 
(2) (4) 

[lm Ilm Ilm 
(t) (3) (1) 

Opx 
(2) 

Oliv 
(105) 
Plag 
(48) 
Spin 
(61) 
Leuc 
(42) 
Cpx 
(81) 
Opx 
(3) 
Ilm 
(8) 
Kspar 
(1) 
Melil 
(2) 

the composi t ion  range to include other  basic lavas and 
andesites one of  us (Sack) has performed pla t inum-loop 
melting experiments at controlled oxygen fugacity 
(close to Q F M )  and 1 bar  over a range of temperatures 
on the liquids whose bulk composi t ions  are listed in 
Tab l e2  (see Sack in prep., 1982a, 1982b for details). In 
Table 2 we have also provided a summary  of the exper- 
imental liquidus relations, including the number  of solid/ 
liquid equilibria for each mineral / rock type and the 
total number  for each phase. It is impor tan t  to realize 
that  these experimental results were obtained under 
anhydrous  condit ions as were those taken from the 
literature (Table 1). Though  comprising a large dataset, 
generating 1,168 statements of  Eq.(17) involving the 
mineral  phases plagioclase, olivine, or thopyroxene,  cli- 

nopyroxene,  spinel, leucite, hematite-ilmenite (rhom- 
bohedral  oxides), melilite and potassium feldspar, they 
suffer f rom this limitation. Thus we have compiled ad- 
ditional experimental results f rom the sources listed in 
Table 3 on the composi t ions  of  coexisting solids and 
liquids in hydrous  silicate melts; as well as the solu- 
bility of water in natural  basaltic, andesitic and granitic 
liquids. Some data  f rom natural  rhyolites is also in- 
dicated. The hydrous  liquid data  of Table 3 will serve 
to constrain derivatives (solubilities of water) of the 
hydrous  free energy of mixing surface. These derivatives 
will be defined through equations like Eq. (17) that  are 
developed in Appendix 3. Conspicuously  missing from 
Table 3 is the experimental work  of  Helz (1973, 1976) 
which was excluded because of  the uncertainties as- 
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Table 3. 

Hydrous Data 

Experiment P (kbrs) T (K) 

Number in each category 

Cases pl ol opx cpx sp lc rhm mel ksp qtz 

Eggler 1972 (Andesite) 1 1,303 6 
Hildreth 1978 (Rhyolite) 1.5-2.5 998-1,070 56 
Burnham and Jahns 1962 (Pegmatite) 1-5 943-1,173 6 ] 
Khitarov et al. 1959 (Granite) 1-3 1,173-1,273 
Khitarov and Kadik 1973 (Granite) 2-5 1,473 
Oxtoby and Hamilton 1978 (Granite) 0.5-3 1,373 

1 1 
6 4 4 6 6 6 

water solubility 

Total 80 6 1 5 4 6 6 6 

sociated with the concentrations of both H 2 0  and the 
alkalies in her experimental liquids. 

Activity composition relations 

Solids 
The numerical evaluation of Eq. (17) requires the calcu- 
lation of R T l n K  and RTln@t ~ for a particular min- 
eral species or solid-solution end member, M. This im- 
plies that adequate thermodynamic data exist for M and 
that activity composition relations for the solid phase 
have been defined. These quantities are discussed and 
tabulated in Appendices 1 and 2, where we have endeav- 
ored to treat as completely as possible all solid phases 
identified in the experimental work (Tables 1, 2 and 3). 

In olivines the tephroite (MnzSiO4) component was 
excluded since a value for its activity coefficient could 
not be stated that was consistent with the activity coef- 
ficient model for the solid solution Fe2SiO 4 - M g 2 S i O  4 
(Wood and Kleppa 1981). The same argument applies 
to the trace element components (such as MnSiO3) in 
orthopyroxene, trace element, A1 and Ti bearing com- 
ponents in clinopyroxene, the NaA1Si20 6 component 
of leucite and all end-member components of nepheline. 
The Sr and Ba components of plagioclase, though ac- 
ceptably modelled as ideal diluents in the solid, were 
not included as statements of Eq. (17) due to insufficient 
and imprecise compositional data on the coexisting li- 
quids. For  this reason we have also neglected equilibria 
involving trace element components of alkali-feldspar, 
the Cr +3 bearing components of the spinels and other 
F e - T i  oxides not listed in Appendix 1. Mineral com- 
ponents involving Fe +3 were not treated (with the ex- 
ception of the Fe304 component of spinel coexisting 
with the hydrous liquids) due to the high relative un- 
certainties associated with the calculated value of the 
ferric iron component in the liquids (see below). In 
addition, as the melilites encountered in this study were 
substantially akermanitic, equilibria involving the geh- 
lenite component were not computed. Further criteria 
employed in generating statements of Eq. (17) for pur- 
poses of parameter calibration are discussed in Appen- 
dix 4. 

Liquids 
As we have already postulated a mathematical form for 
the solution properties of natural silicate liquids (Eq. 8) 

our task here is to select a suitable way of expressing 
their composition in terms of thermodynamic com- 
ponents. The problems associated with choosing com- 
ponents for silicate liquids have already been discussed 
in some detail (see Nicholls 1976, Carmichael etal. 
1977, Ghiorso and Carmichael 1980). They are three 
fold: 1) such components must span the composition 
space defined by natural liquids; preferably the quan- 
tity of each should be positive in this space, 2) adequate 
thermodynamic data must exist to describe the chemi- 
cal potential of each pure liquid component over the 
T, P range of interest, and 3) they must preserve, by a 
suitable linear transformation, the ideal mixing be- 
havior discussed above and identified by Eqs. (5) (vol- 
ume) and (6) (heat capacity). In addition, it would be 
most desirable if components could be chosen that 
successfully described the configurational entropy of the 
liquid. This would, of course, necessitate knowing the 
stoichiometry of the actual molecules and polymeric 
units which form in these liquids as a function of T, P 
and composition. The desirability of properly modelling 
the configurational entropy arises from our need to 
approximate the local shape of G mix in the compo- 
sitional range of natural liquids. If the configurational 
free energy is improperly modelled, the excess free en- 
ergy (i.e. the W's of Eq. 7), will adjust itself to reflect 
the experimentally inferred G mix. Thus, if the interaction 
parameters are to have physical meaning, accounting 
solely for real excess enthalpy terms, then the molecular 
species which actually interact should be chosen as 
components. 

This discussion can be illustrated with the following 
calculation. Let us consider equilibria in the system 
NaA1Si 30  8-CaA12Si20 s - C a M g S i 2 0  6. Weill et al. 
(1980) have developed an expression for the free energy 
of mixing in this system that accurately reproduces the 
phase diagram and the measured thermodynamic pro- 
perties of the liquid. Their expression involves a two- 
lattice model to approximate the configurational en- 
tropy. Suppose we limit our discussion to the crystalli- 
zation of haplobasaltic liquids in this ternary and con- 
sider the values of the configurational entropy along 
the cotectic between Di47.s and Di23. If we abandon 
Weill et al.'s (1980) configurational term and model the 
entropy as the ideal mixing of the components 
CaMgSi20 6 -  NaA1Si30 s - CaAI~Si, 0 8 in .the liquid, 

c o n f l g u r a t l o n a [  ~ i d e a l  the difference between G and G can be 
fitted to an equation for G . . . . . .  of the correct form for a 
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regular solution 5 with a standard error of + / - 2 3  cals. 
Now if Weill et al.'s (1980) configurational entropy for 
Diopside-Anorthite-Albite is correct, the interaction pa- 
rameters of G . . . . . .  that we obtained are little more than 
fit parameters - they do not really describe the micro- 
scopic energetics of the liquid nor are they applicable 
to calculations in the binaries. On the other hand, these 
parameters do reproduce G mix along the haplobasaltic 
cotectic. It could be argued that if one's interests are 
confined to just this portion of the phase diagram (the 
region of petrologic interest) either approach to model- 
ling G mix is valid. 

In selecting components to describe the compo- 
sitions of naturally occuring silicate liquids we are 
faced with the task of merging the available data on the 
structures of these liquids with the macroscopic ther- 
modynamic observations that led to our choice of reg- 
ular solution theory to model the G ...... . Researchers 
interested in modelling phase diagrams (Hon etal. 
1981) or applying polymer theory to silicate melts 
(Toop and Samis 1962; Masson 1968; Hess 1971, 1980) 
have often described silicate liquids in terms of lattice 
models where mixing occurs on framework and in- 
terstitial sites or in terms of mixing of various poly- 
meric units of different molecular weight. Nesbitt and 
Fleet (1981) have shown that for the system PbO 
- S i O  2 the molecular units PbO, SiO 2 and Pb2SiO 4 
mix ideally, a result which they argue is consistent with 
predictions made by the model of Toop and Samis 
(1962). Using these three species alone Nesbitt and 
Fleet (1981) are able to reproduce the available ther- 
mochemical, conductivity and density data for the bi- 
nary. The formation of the Pb2SiO ~ complex in this 
system is consistent with Masson's (1968) contention 
that "the ion SiO24 is the most abundant single species 
of discrete silicate ion at all silica contents". Other 
"common"  silicate melt species have been suggested by 
Mysen et al. (1982) in a recent summary of the struc- 
tures of silicate glasses. They conclude "that the anion- 
ic network in natural magma can generally be de- 
scribed in terms of chain, sheet, and three dimensional 
network structures", consisting of molecular units con- 
taining SiO3, Si20 5, and SiO 2 or their aluminum bear- 
ing equivalents. The Knudsen cell activity measure- 
ments of Rammensee and Fraser (1982) substantiate 
Mysen et al.'s claim in that these authors find network 
like structures (NaA1Si30 8, KA1Si30 8, KA1Si20 6 and 
SiO2) in the molten system NaA1Si3Os-KA1Si30 s. 
With regard to these network species, it has long been 
Burnham's contention that feldspar like molecules 
exhibit ideal mixing in the system Albite-Anorthite- 
Potassium feldspar-H20 (Burnham 1974, 1975a, 1975b, 
1979). In a summary of the properties of multicom- 
ponent aluminosilicate melts involving the feldspar li- 
quids, water and silica, Burnham (1981) expands the list 
of melt species to 19, each having a stoichiometry re- 
lated to some solid phase which precipitates from the 
system. These include network, sheet and chain units. 
5 G e~cess= --522XAnXDi--6,615XDiXAb+ 1,966XAnXAb. Bar- 

ron (1972) has shown that the entire phase diagram Di 
- A n - A b  as well as Quartz-Fayalite-Leucite and the gra- 
nite system can essentially be approximated using an ideal 
entropy and regular solution theory for the excess free 
energy 

In the system Albite-Anorthite-Forsterite-H20, Burn- 
ham (1981) postulates the presence of network, chain 
and orthosilicate units. 

A fairly safe conclusion to draw from most of the 
above mentioned structural studies of both simple and 
complex silicate liquids (and their quenched glasses) is 
that the molecular species present are probably fairly 
simple. With this in mind we have chosen the molec- 
ular units listed in Table 4 as components to describe 
the compositions of natural silicate liquids. This set is 
an expanded version of the "stoichiometric mineral" 
components used by Ghiorso and Carmichael (1980) 
and is meant to be applied to all natural silicate li- 
quids, not just to those that are met-aluminous. The 
reader will notice that this set consists mostly of stoi- 
chiometric units related to network, orthosilicate and 
chain type structures. We have placed the anhydrous 
molecules on an 8-oxygen basis because it was found 
that the melt species so defined were most compatible 
with the regular solution form of G . . . . . .  (Eq. 7), generat- 
ing the smallest residuals of Eq.(17) following re- 
gression of the experimental database. These com- 
ponents are used to compute the ideal free energy of 
mixing and approximate the configurational free energy 
of the liquid. It should be borne in mind that the 
selection of these components was also dictated by the 
availability of adequate thermodynamic data for the 
pure liquids (Appendix 2) such that a minimum of esti- 
mation and uncertainty is associated with the given ther- 
modynamic constants. 

Calibration of the interaction parameters 
The numerical procedures used to calibrate the regular 
solution interaction parameters of Eq. (7) to the com- 
bined experimental and thermodynamic (Appendix2) 
database are discussed in some detail in Appendix 4. 
These techniques are mainly based upon generalized 
matrix inverse theory and have been developed to take 
into account estimated uncertainties in the data. Values 
of the interaction parameters so calibrated may be 
found in Table A4-3. Though there are 45 anhydrous 
interaction parameters listed, these constitute linear 
combinations of only 26 independent coefficients de- 
termined by least squares analysis. Thus the "real" 
number of variables required to fit the anhydrous da- 
tabase is 26. The reader interested in the mechanics of 
these manipulations should refer to Appendix 4 for 
more details. The standard error in the model after 
calibration is 587 cals for the anhydrous database and 
788 cals for the hydrous database. Both of these values 
are at the level of estimated uncertainty in the contrib- 
uting thermodynamic data (Appendix 2) and we con- 
clude that our model equations for RTlnTi  fit the 
experimental/thermodynamic database to within the ac- 
curacy of measurement. 

Statistical results : 
implied uncertainties in experimental quantities 
Using the parameters of Table A4-3, estimates of the 
right hand side of Eq.(17) (or for hydrous liquids 
Eqs. A3-15 or A3-16) can be calculated for a given 
experimental liquid composition and compared to the 
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Fig. 1. Calculated temperature plotted against experimental tem- 
perature for olivine- and orthopyroxene-liquid assemblages at pres- 
sures of 1 bar and greater. Error bar is two standard deviations 
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Fig. 2. Calculated temperature plotted against experimental tem- 
perature for plagioclase-liquid assemblages. Error bar is two stan- 
dard deviations ( + / - 30 ~ 

actual quantities. The differences between the two num- 
bers are residuals, and the average of these is tabulated 
for each of the component/ l iquid equilibria used in 
calibrating the model in Tables 5 and 6. The standard 
deviations of these averages are also provided. The 
values are given in calories. In addition, for each min- 
eral phase, averages and standard deviations of re- 
siduals are also given, as well as the correlation coef- 
ficient (or correlation matrix) that describes compo- 
nent-component  effects in the solid. Thus, the fit for 
olivine is better that the individual fits for the olivine 
components  forsterite and fayalite separately. 

If temperature is treated as a variable in the terms 
on the left hand side of Eq. (17) then the calculated 
estimates of the right hand side can be used to predict 
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Fig. 3. Calculated temperature plotted against experimental tem- 
perature for augite (diopside, hedenbergite)- and leucite-liquid as- 
semblages. Error bar is two standard deviations ( + / - 2 4  ~ for the 
pyroxene equilibria. The wide scatter in the leucite data is attribut- 
able to the fact that leucite of essentially the same composition 
crystallizes from liquids of widely different composition. Therefore 
its use as a solid/liquid geothermometer is substantially poo- 
rer than for the other solid phases 

values of the equilibrium temperature. 6 This is identical 
to the geothermometer  approach of Ghiorso and Car- 
michael (1980) here expanded to include many more 
phases of igneous interest. Predicted versus experimen- 
tal temperatures for the solid/liquid anhydrous equilib- 
ria are plotted in Figs. 1 through 4. These data are also 
summarized as average residuals and standard de- 
viations of these residuals in Table5 and for the hy- 
drous liquids in Table 6. As with the caloric quantities, 
average deviations, standard deviations and correlation 
coefficients for each mineral phase are given. The utility 
of the solution model as a geothermometer  may be 
judged from Tables 5 and 6. The great diversity of 
liquid compositions which comprise the database 
should be kept in mind when assessing these results. 

If  the sole purpose of generating a solution model 
for silicate liquids were to improve the current state of 
geothermometry,  then the results in Tables 5 and 6 
would be disapointing. The empirical equations of 
Smith (1983) provide a better feldspar-liquid geother- 
mometer  for example but, of course, have no con- 
straints consistent with any other solid liquid/equilibria. 
As was discussed in the introduction the utility of 
adopting a thermodynamic form for our model is in 
predicting liquid phenomena beyond the database. We 
hope to demonstrate these advantages in subsequent 
sections. 

A Monte  Carlo error simulation has been perform- 
ed in an effort to determine how much of the residual 
standard deviation seen in Table5 is due to the pre- 
cision of liquid/solid compositions determined by elec- 

6 Equation (17) defines a non-linear equation in temperature 
which we solve iteratively using Newton's method. The 
computer program mentioned later performs these rather 
laborious geothermometric calculations 
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Fig. 4. Calculated temperature plotted against experimental tem- 
perature for Fe -T i  oxide assemblages with liquid. Error bars are 
two standard deviations and refer to (1) spinels; just considering 
the components Fe2TiO 4 and Mg2TiO 4 (+/--73~ (2) spinels; 
with just FeAI204 and MgAlzO 4 components (+/-20~ and (3) 
spinels; with both Ti and A1 components ( + / -  42 ~ 

tron microprobe. For  a typical experimental run (Sack 
1983a, Korath  4t=8-15, see Table2)  which consisted of 
liquid coexisting with olivine, plagioclase, clinopyrox- 
ene and spinel, we assumed analytical uncertainties 
(standard deviations) in the wt. % abundances of each 
oxide to be the maximum of 3 % of the amount  present 
or 0.05. This is obviously an upper estimate for some 
elements and a low one for others. F rom these es- 
timates, by generating mult inormal random deviates, a 
set of 100 "experimental  runs" were calculated, all 
compositionally distributed about  the original result. 
These "da ta"  were processed through Eq.(17) and 
equilibration temperatures for each component-phase 
predicted. The results are given in Table 7. As in the 
two previous Tables we have listed average tempera- 
tures and standard deviations for each mineral phase as 
well as component  correlation coefficients in addition 
to standard deviations in the calculated mole fractions 
of forsterite and fayalite in olivine and albite and anor- 
thite in plagioclase. The results reveal the minimum 
uncertainty in predicted temperature due to analytical 
technique (overall + / - 1 4 ~  and up to 42~ at the 
95 % confidence level). This is a minimum in that the 
test does not involve true replicates nor does it assess 
variation between electron microprobe laboratories. We 
have not been able to model uncertainties attributed to 
the latter but believe that some portion of the differ- 
ences between the residual standard deviations of Ta- 
ble 5 and the simulation of Table 7 is due to this cause. 

We have used Eq. (10) and the parameters of Table 
A4-3 to calculate an estimate of the activity of silica in 
experimental liquids that coexist at T and P with both 
olivine and orthopyroxene. These estimates are pro- 
vided in Table 8 and are compared to liquid silica 
activities defined by the coexistence of the solid phases 
olivine and orthopyroxene: 

2 MgSiO3(s) = M g 2 S i O 4 ( s )  q- S i O 2 ( t )  , (19) 

Table 4. Adopted Components 

* Si40 8 0.25 (SiO 2 - 0 . 5  (FeO + MnO + MgO + NiO 
+ CoO + C a O ) -  N a 2 0  - K20  ) 

* Ti+O 8 0.25 TiO 2 
* Al16/308 0.375 A1203 
* Fe16/308 0.375 Fe203 

Cr16/308 0.375 Cr20 3 
* FegSiaO 8 0.25 FeO 
* Mn4Si20 s 0.25 MnO 
* Mg4Si20 8 0.25 MgO 

Ni4Si20 8 0.25 NiO 
C04Si208 0.25 CoO 

* Ca,,Si208 0.25 CaO 
* Na16/3Si8/308 0.375 N a 2 0  
* K16/3Sis/308 0.375 K20  

P16/508 0.625 P205 
S%O 8 0.125 SrO 

* H20  H20  

If moles of the simple oxides are first computed, they can be trans- 
formed into moles of the new components in the manner indicated 
in the right hand column 

and 
2 FeSiO 3(s) = FezSiO4(s)  + giOz(t) .  (20) 

For which 

liquid RTlnfao]ivine /(aOpX "~2~ RTlnasi02 =RTlnK19- t Mg2SiO4/t MgSiO3! ! 
and 

liquid R T In/a ~ / (a  ~ ~2~ RTlnasio2 =RTlnK2o- ~ FezSiO4/t FeSiO3! 1' 

All these calculations of the activity of silica are given 
in calories in Table 8. The average standard deviation 
of residuals (453 calories) compares quite favorably 
with estimated uncertainties in the thermodynamic pa- 
rameters and with the residuals for the overall fit of the 
model (Table A4-4). At this point it should be em- 
phasized that to develop the regular solution model, 
the simple oxide components were recalculated onto an 
8-oxygen basis, so that 1/4 #si,o+ equals/~sto2 or equiva- 
lently 1/4RTlnam4 o equals RTlnasi o In other words 8 . 2" 
the free energy change for the reaction: 

4SiO 2 = S i 4 0  8 
liquid liquid 

is zero. This clearly must be the case at equilibrium. 
The residuals of Tab le8  ( A ( F o - E n )  and A(Fa 

- F s ) )  exhibit a slight inverse pressure dependence 
(coefficient of variation, r E , of 0.49 and 0.35, respect- 
fully). We suspect this pressure dependence is a con- 
sequence of inappropriate volume or compressibility 
data for pure silica liquid, though potentially it could 
be pointing to excess volume of mixing terms for silica. 

The shape of  the free energy of mixing surface 

To understand more intuitively the free energy surface 
described by the parameters of Table A4-3, we must 
acquire some idea of its topology. It is extremely im- 
portant  to locate, in our 16 dimensional component  
space, all minima and maxima, and their magnitudes, 
in order to determine this topology. If some general- 
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Table 5. Statistical results from back calculation using the model data anhydrous liquids 

Number Component or phase Average Standard Correlation 
error deviation 
in 
predicting 
T (K) 

Average 
distance 
from free 
energy 
surface 
(cals) 

Standard 
deviation 

Correlation 

215 Forsterite 0.05 36.68 
215 Fayalite 0.66 56.19 
215 Olivine 0.71 31 .92  -0.1039 

2 Akermanite - 6.16 0.09 
19 Enstatite 14.95 67.30 
19 Ferrosilite - 0.50 77.43 

Opx 7.22 57.12 0.2424 
85 Diopside - 0.63 22.62 
86 Hedenbergite 0.94 41.08 

Cpx 0.16 23.62 0.0175 
1 Sanidine 2.02 
1 Albite 68.64 

Kspar 35.33 -- 
123 Albite - 1.55 52.72 
124 Anorthite 3.24 36.63 
123 Plagioclase 1.72 30 .03  -0.1352 
42 Leucite - 0.32 66.94 - 

8 Ilmenite 0.75 21.76 
8 Geikielite 1.09 43.55 

Rhombohedral Oxide 0.92 29.34 0.5663 
44 Spinel - 3.19 20.27 
44 Hercynite -- 2.05 28.60 
48 Ulvospinel - 0.25 37.36 
48 Mg-titanate 0.44 136.23 

sp + hc - 2.62 20.16 0.3425 
uv+mt  0.10 73.43 0.1588 
all four - 2.27 42.09 * 

1,160 Summary 0.32 51.40 

--8.63 
12.34 
3.70 

92.34 
- -  163.11 

25.62 
--68.74 

9.26 
--7.15 

1.06 
--28.00 

-606.28 
--317.14 

21.88 
-55.92 
-34.50 

14.90 
-7.61 

-- 15.07 
--11.34 

62.73 
65.20 

7.42 
- - 1 0 . 9 1  

63.97 
- - 1 . 7 5  
26.00 

2.20 

482.06 
635.05 
378.99 

1.30 
566.22 
378.96 
383.21 
328.30 
502.11 
301.33 

446.40 
659.00 
372.85 
775.31 
270.85 
374.71 
286.51 
399.66 
552.41 
525.88 
846.95 
386.22 
537.55 
335.95 
555.78 

-0.0999 

0.2870 

0.0100 

-0.1378 

0.5645 

0.2985 
0.1818 

* Correlation coefficient matrices 

cals hc uv mt 
sp O.2193 0 . 0 4 2 8  0.53401 
hc 0.4679 -0.5135 
uv -0.0011 

T hc uv mt 
sp [0.2730 0.0630 0.5718 ~ 
hc [ 0.4761 -0.4698 
uv 0.0228 

izat ions can be made  concern ing  the shape of this sur- 
face the chemistry of the l iquids might  be more  readily 
unders tood.  For tunate ly ,  some progress can be made  
along these lines. 

The mola r  excess free energy of mixing, G . . . . . .  , is 
from Eq. (7): 

i=1 j = l  

which can be wri t ten in the vector no ta t ion  in t roduced  
in Appendix  4 as: 

~exeess 1 y T  
- 2 ~  W X .  ( 2 2 )  

Inspec t ion  of Table  A4-3 will reveal that  there are 
twelve b inary  subsystems which possess positive inter- 
act ion parameters  and  therefore show immiscible  phe- 

n o m e n a  at finite temperature.  A m a x i m u m  excess free 
energy of mixing is a t ta ined at the midpo in t  of the 
T i 4 O s - M g 4 S i 2 0  s jo in  (3,168.4 cals/mol). It is easy to 
verify that  there are only two ternary subsystems where 
all three regular  solut ion parameters  are positive (Si lO s 
-- Fe l  6/30 s - M n ~ S i 2 0  s and  Fe l  6/30 8 - Ca4Si20  s 
- M n 4 S i 2 O s )  and  that  in no higher m-order systems do 
m positive in teract ion parameters  occur. Fu r the rmore  
in these two strictly positive ternaries the relative 
magni tudes  of the W~fs are such that no in terna l  max- 
ima in the G . . . . . .  surface occur ( ternary system ca- 
tegory IVA of Meijer ing 1950, 1951). Thus  all excess 
free energy values in the 16-component  space are lower 
than  3,168.4 cals/mol. Whether  any in ternal  m i n i m a  
exist can be evaluated by extracting the critical or 
s ta t ionary  points  of G . . . . . .  (Eq. 22). F o r  a regular so- 
lu t ion  G . . . . . .  possesses the mathemat ica l  properties of a 
quadra t ic  form; in particular,  if the funct ion is dis- 
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Number  Component  or phase Average Standard Correlation Average Standard 
error  deviation distance deviation 
in from free 
predicting energy 
T (K) surface 

(cals) 

Correlation 

1 Forsterite - 58.56 693.66 
1 Fayalite 218.89 - 2,991.63 

Olivine 80.17 - 1,148.99 

5 Enstatite 50.94 89.96 --286.70 571.25 
5 Ferrosilite - 33.06 138.82 272.98 953.97 

Opx 8.94 42.00 --0.8320 --6.86 287.05 - 0 . 8 1 3 /  
4 Diopside 10.53 33.21 --133.08 394.72 
4 Hedenbergite - 13.25 38.89 174.37 504.93 

Cpx - / . 3 6  23.19 -0 .1800  20.65 289.4/ -0 .1900  

6 Albite 9.53 8.86 -81 .25  75.20 
6 Anorthi te  2.94 38.87 --38.64 625.33 

Plagioclase 6.24 20.74 0.1900 --59.95 32/.05 0.1700 

/?-quartz 892.42 1,556.83 2.42 28.87 

6 Ilmenite 68.10 37.53 --890.14 480.47 

6 Magnetite 0.57 53.33 6.37 826.94 
6 Ulvospinel --54.01 54.84 915.33 937.23 

m g + u v  --26.72 49.86 0.7000 460.86 818.27 0.7200 

22 water 0.00 752.44 

80 Summary 71.95 460.62 - 4 4 . 7 0  791.32 

Table 7. Statistical results from the Monte  Carlo error simulation (Sack, K-8-15). Olivine, plagioclase, clinopyroxene, spinel-liquid assem- 
blage 

Component  or phase Average Standard Correlation Average Standard 
T (K) deviation Mole fraction a deviation 

Forsterite 1,412.12 9.86 

Fayalite 1,364.82 7.16 
Olivine 1,388.47 3.62 

Albite 1,408.06 12.58 
Anorthite 1,426.09 7.38 

Plagioclase 1,417.08 6.90 
Diopside 1,396.42 5.36 

Hedenbergite 1,394.14 9.31 
Cpx 1,395.28 5.46 

Spinel 1,408.36 7.27 

Hercynite 1,417.95 6.10 

Ulvospinel 1,545.55 4.52 

Mg-Titanate 1,546.09 20.48 
s p + h c  1,4/3.15 6.05 
uv + mt 1,545.82 10.18 
Total 1,479.49 6.79 

--0.6798 

-0 .1200  

0.7112 0.0149 

0.3176 0.0038 

0.1835 0.0052 

0.8193 0.0217 

0.0365 

hc 

sp -0.6376 

hc 
UV 

Correlation coefficient matrix 

uv mt 

0.0224 0.6393 ] 

0.3993 -0 .1499  / 
--0.1385] 

For  olivine these numbers are the square root of the activity and represent an approximation 
The analysed phases correspond to activities of Fo = 0.5276, Fa = 0.1299, Ab = 0.1911 and An = 0.7948 
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Table 8. Partial Molar Free Energies of SiO 2 in Calories/Mole 

P (kbars) R TIn asio21iq 

T (K) Fo -- En Fa-- Fs 

Solution R TIn a~iq o 
model 1 2 o - -  /4.(gSi,tO8 - -  ~Si408 ) 
- -  1/4.(gSi408 
--  g~ ) A ( F o  --  En)  A (Fa  --  Fs)  

Stolper (1981) 
519-12 t0.0 
519-10 10.0 
519-52 15.0 
519-16 20.0 
519-14 20.0 
Takahashi(1980) 

1,623 -2,738 
1,573 -2,865 
1,673 -3,516 
1,723 -4,275 
1,673 -4,334 

14.0 1,543 -3,737 
14.0 1,548 -4,013 

Grove et a1.(1982) 
187.3 0.001 1,408 - 1,717 
187.4 0.001 1,392 -1,754 
79-38B5 0.001 1,410 - 1,384 
79-9Cl1 0.001 1,366 - 1,383 
79-9C7 0.001 1,358 - 1,182 

-3,136 -3,360 622 224 
-3,160 -3,450 585 290 
-3,399 -3,560 44 161 
-4,357 -3,773 -502 -584 
-3,970 -3,495 -839 -475 

-3,593 -3,096 -641 -497 
-3,340 -3,169 -844 - 171 

- 1,508 -2,046 329 538 
- 1 , 8 3 8  -1,998 244 160 
- 1,476 -2,012 628 536 
-1,553 -1,495 112 - 58 
-1,804 -1,473 291 -331 

standard deviation 
(both components) 
(correlation coefficient) 

562 395 
(453) 
(0.79) 

cussed (with no loss of generality) on the unit sphere, 
where xTx= 1, then its stationary points are specified 
by the ~genvectors of W (Parlett 1980). Thus the so- 
lutions X, to 

w x  = 2 x (23) 
define the compositions of all minima, maxima or sad- 
dle points on the surface. These compositions can be 
uniquely translated from the unit sphere (XrX=I) to 
the unit plane (xT1 = 1) as can the topological meaning 
we will attach to these unit sphere eigenvectors in the 
discussion that  follows. For  each X there exists an 
eigenvalue, 4, which has physical meaning: 

d . . . . . . . . .  i t ical  _ _ I ' ~ T  W X  
- - 2 x x  

which since 2 is a scalar 
~excess  cr i t ica l  1 A T A G , = ~ 2 X  X 

but we have restricted our attention to xTx= 1, there- 
fore: 

2 = 2 ~ e x c e s s ,  critical. 

The eigenvalues of W are just twice the values of the 
excess free energy of mixing at the critical points. There 
are 16 eigenvectors and eigenvalues of the matrix W. In 
the present case (W defined by Table A4-3), only one 
eigenvector lies within the composit ional  subspace 
spanned by positive mole fractions. Five others cor- 
respond to the pure ideal diluents (Cra6/3Os,  etc . . . .  ). 
Liquid compositions corresponding to two permissible 
mul t icomponent  eigenvectors have been extracted for 
both the anhydrous and hydrous parameters.  These are 
provided along with their excess free energies of mixing 

in Table 9. Since G ... . . .  obviously assumes both nega- 
tive and positive values as a function of X, the matrix 
W is indefinite and all the eigenvectors represent the 
compositions of saddle points on the surface (Flanigan 
and Kazdan  1971). There are no internal minima or 
maxima and thus inspection of Table A4-3 will reveal 
that the lowest value that the excess free energy of 
mixing can assume is at the midpoint  of the 
Na16/3Sis/30 8 -  Al16/30 8 join: - 33,904 cals/mole. This 
analysis shows that the G ... . . .  defined by our multi- 
component  database is a sloping surface and is negative 
over the geologically relevant portions. It  contains a 
single point, quite asymmetrically placed, where the 
determinant of the matrix of the compositional second 
derivatives goes to zero. v In the language of phase 
diagrams this point is a spinodal locus (Barron 1978). 
The key to understanding the physical phenomena this 
surface implies is embedded in its asymmetry. The total 
free energy of mixing is the sum of the excess and ideal 
terms, and the ideal free energy of mixing is a mono- 
tonic function of temperature which is symmetric about 
the composit ional  midpoint of the system. The wt. 
composit ion corresponding to this midpoint  for anhy- 
drous liquids (Xi= 1/15) is also given in Table 9 along 
with its excess free energy of mixing. Note how much 
more positive this value is than that of the anhydrous 
"saddle point"  eigenveetor, or that of the typical tholeiite 
given in the last column. Along with each composition 
in Table9 we have provided the value of the ideal 
entropy of mixing, ~ d e a l  from which dide,l can be calcu- 
lated as a function of temperature:  
G i d e a l  = __ Z ~  deal. 

7 The second derivative matrix of Eq.(22) restricted to the 
unit sphere and evaluated at the eigenpoint is W - 2 I  n. Its 
determinant is zero since de t (W-2I , )=0  defines the eigen- 
values 



Table 9. Shape of the free energy of mixing surface 

Eigenvectors of the (a) Anhydrous Typical 
W matrix (wt%) maximum tholeiite 

entropy (Phil- 
hydrous anhydrous Composition potts) 

SiO 2 33.45 34.31 27.84 22.36 52.29 
TiO 2 9.87 10.26 7.72 5.58 1.17 
A120 3 15.02 15.00 9.44 4.74 14.75 
F%O 3 1.88 0.05 4.05 7.43 
Cr20 3 0.00 0.00 3.83 7.07 
FeO 7.73 8.19 6.47 5..01 12.25 T 
MnO 0.01 0.02 2.69 4.95 0.22 
MgO 4.86 4.95 3.79 2.81 5.30 
NiO 0.00 0.00 2.82 5.21 
CoO 0.00 0.00 2.83 5.23 
CaO 9.09 9.20 6.34 3.91 9.89 
NazO 7.30 7.32 4.92 2.88 2.60 
K20 10.43 10.70 7.28 4.38 0.33 
P205 0.00 0.00 2.15 3.96 0.16 
SrO 0.00 0.00 7.83 14.46 
H20 0.36 

Gexcess -27,917 -30,296 -17,261 -7,822.8 -20,834 
Sideal 4 .3756  4.0970 5.1361 5.3816 3.3315 

(=) Compositional midpoint between anhydrous eigenvector and 
anhydrous maximum entropy composition 

At any finite T, it can be seen that the ideal contri- 
bution to dmix will be most strongly pronounced at the 
midpoint composition, and less so everywhere else. As 
T increases above absolute zero a minimum will begin 
to form in the G mix surface at this midpoint due to 
dideal. This minimum will become stronger as T in- 
creases, until it completely dominates the shape and 
magnitude of the surface at elevated temperature. Now 
a multidimensional saddle point behaves very much 
like a "partial" minima; that is, at this point the gra- 
dient of G ... . . .  is zero but its second derivatives do not 
indicate that the function is everywhere convex. At a 
given temperature a liquid of a particular bulk com- 
position might lower its free energy by separating into 
two, the compositions of each being expressions of their 
geometrical placement on the slopes of the "minima" 
of the ideal and nonideal free energy terms. We have 
then a plausible argument for the existence of liquid 
immiscibility based upon the shape of a free energy of 
mixing surface whose excess terms are strongly nega- 
tive! It remains now to demonstrate the existence and 
calculate the compositions of these binodal liquids, and 
determine whether some or all natural silicate liquids 
fall into the compositional volume that exhibits immis- 
cibility. We take up these matters below. 

Extensions to the regular solution model 
for met-aluminous silicate liquids 
Applications of a regular solution model as a solid/ 
liquid geothermometer or as a means of calculating 
activities of petrologically interesting liquid com- 
ponents has been discussed before (Ghiorso and Car- 
michael 1980). Our present model offers little more 
than an expanded compositional basis for these calcu- 
lations and we shall not discuss them further. 

121 

However there are some revisions resulting from the 
expanded database and the more stable regression tech- 
niques that should be briefly noted. 

Activity coefficients of minor components 
in olivine and plagioclase 
In our previous work (Ghiorso and Carmichael) we 
made estimates of the Henry's law activity coefficient 
for the KA1Si30 ~ component in plagioclase by averag- 
ing" a value for ?KalSi30=P'agi~176 assuming . . . .  the equilibria 

KA1Si30 8 = KA1Si30 8 
plagioclase liquid 

held for each plagioclase/liquid experimental datum. 
Our new model and data generates a revised estimate 
for this quantity: 4 .870+/ -1 .279 .  The value shows no 
T or P dependence, is consistent with ideal solution in 
the plagioclases, is based upon 27 experimental results 
over the temperature range 1,337K to 1,418K, and 
falls within two standard deviations of our previous es- 
timate. From similar considerations an estimate of the 
average excess free energy of the MnzSiO 4 component 

"RTI o l i v i n e  x in olivines can be made t n TMn2sio4). Our value of 
33,972 cals/mol may be quite inaccurate owing to the 
absence of other Mn minerals in calibrating the model 
parameters. Similar calculations can be performed for a 
number of trace constituents in the solids, as long as 
suitable thermodynamic data are available. Thus a 
whole collection of trace element "distribution coef- 
ficients" could easily be calculated for a wide range of 
liquid compositions from a minimal amount of experi- 
mental data. These coefficients would perforce be com- 
positionally dependent. We will not make such calcu- 
lations here, but only wish to suggest how the solution 
model can help quantify their compositional dependen- 
cies and facilitate their calculation. 

Activity of silica and a petrogenetic grid 
for basic lavas 
If there is any parallel between aqueous solutions and 
silicate liquids, then the role of pH in the former has as 
its equivalent the activity of silica in the latter. As the 
relationship between so many igneous minerals can be 
expressed in terms of silication reactions [for example 
MgzSiO 4 (forsterite)+SiO 2 (l iquid)=2MgSiO 3 (ensta- 
tite)], the silica activity of any natural liquid will have 
a dominant influence on the mineral species that even- 
tually precipitate as the liquid cools at equilibrium. 

One of the properties of regular solutions is that for 
any component such as SilOs: 

(c~lnasi4os/OP)T n j  - ( O i q  --vO,liq~/RT=O , " - -  k ~ S i 4 0 8  S i 4 0 8 ] /  

where ~iq and v ~ represent the partial molar vol- S i 4 0 8  8 i 4 0 8  
ume of Si40 s in a multicomponent liquid and the 
molar volume of pure liquid Si408 respectively. Clear- 
ly, since the difference between these two quantities is 
zero, the activity of silica will not be a function of 
pressure, and it will only change in an ascending mag- 
ma in response to a change in temperature or com- 
position. 
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Based on this simple relationship, a petrogenetic 
grid can be constructed which depicts the conditions of 
equilibration of various magma  types with an idealized 
mantle or source assemblage. To simplify our dis- 
cussion we shall assume that during their ascent to the 
surface, magmas have their Fe203/FeO ratios stipu- 
lated by an oxygen fugacity which follows the Q F M  
buffer. Otherwise the basic magmas that arrive at the 
earth's surface as lavas are taken to represent liquid 
compositions generated at depth, so that effects such as 
mass transfer or crystal fractionation, which could mod- 
ify the magma 's  composit ion en route to the surface, 
are ignored. 

If it is granted that olivine and or thopyroxene could 
coexist in equilibrium in the source regions of all basic 
magmas,  then the activity of silica will be given by the 
buffer reaction 

Mg2SiO 4 + SiO 2 = 2 MgSiO 3 
olivine liquid orthopyroxene 
where 
log asio2 = A G~ R T) 

+ 2 log opx 1,,, oliv (24) 
a M g s i O 3  - -  . v &  a M g 2 S i O  4 . 

It can be assumed that the log terms on the right hand 
side of Eq. (24) cancel. This is true if both solid phases 
are pure (the standard state) and approximately so un- 
der mantle conditions where both solids are diluted 
with iron components  at pressures where the concen- 
tration of A1 in the M1 site of the pyroxene is small. 
This follows since an olivine of Fo90 composition, 
whose activity is approximately X2Mg2sio4, is typically in 
equilibrium in the mantle with En9o, which has the 
stoichiometric coefficient 2 preceding the log of its ac- 
tivity (-~0.90). Given this assumption, the calculated 
isobaric curves of silica activity corresponding to 
Eq. (24) are shown in Fig. 5. Also shown in Fig. 5 is the 
variation of the calculated log asio2 for six lava types 
whose analyses are provided in Table 10, and which 
may have been in equilibrium with an olivine-orthopy- 
roxene assemblage in their respective source regions. 
The slope of these curves of log asio~ vrs lIT is opposite 
in sense to those calculated by Ghiorso and Carmichael  
(1980). This is solely a response to the value of the 
activity coefficient of silica being different, and hope- 
fully more likely correct, in the present study. 

The conditions of anhydrous equilibration, at oxy- 
gen fugacities equal to QFM, are represented by the 
intersection of the curves which describe logas~o~ as a 
function of T for the lavas with the isobaric mantle 
source assemblage curves. The effect of small amounts  
of water dissolved in the liquids is to reduce the ac- 
tivity of silica 8, and thus either increase the equili- 
brat ion pressure at a given T, or reduce the temperature 
at a constant pressure. 

Aside from the komatiite, all the liquidus tempera- 
tures are taken to be 1,100 ~ C, and at any given temper- 
ature such as 1,350 ~ C, the progressive increase in the 

8 The effect of water reducing the activity of silica is seen for 
example in the experiments of Eggler (1972) on a Paricutin 
andesite where liquidus orthopyroxene is replaced by oli- 
vine with addition of water (Eggler, Fig. 4). 
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Fig. 5. Predicted temperature variations of log aliqo2 in typical lavas 
of various compositions (Table 12) compared to that obtained from 
olivine-orthopyroxene mineral buffers as a function of temperature 
and pressure 

activity of silica in these lava types necessitates equili- 
brat ion with an olivine-orthopyroxene assemblage at 
progressively lower pressures, or shallower depths. In- 
deed, in the case of the andesitic lava, so shallow is the 
depth, that it is geologically unreasonable that anhy- 
drous equilibration occurred. The very high liquidus 
temperature of komatii te lavas (~-1,500~ requires 
that their source regions be very deep if the source 
region has its silica activity defined by olivine-orthopy- 
roxene. 9 

The sil ica-poor potash-ankaratri te from Uganda  
(Table 10) has about  the lowest activity of silica of any 
terrestrial silicate magma,  and  in character  with alkali- 
rich lavas, has a relatively high Fe203/FeO ratio (Sack 
et al. 1981). If this rock ratio is used to calculate silica 
activity as a function of temperature, rather than the 
variable F % O J F e O  ratio calculated from the oxygen 
fugacity of the Q F M  buffer, there is a slight decrease in 

9 There is nothing in the thermodynamic approach which 
requires olivine and orthopyroxene to be physically present 
in the source region, only that the activity of silica be 
constrained to that defined by an olivine-orthopyroxene 
assemblage. Presumably, this could also be achieved by oliv- 
ine alone, for as an F e - M g  phase it is subject to the oxida- 
tion equilibrium: 
3 F e 2 S i O 4 ( o l  ) + 0 2 = 2 F%O4(sp) + 3 SiO2(liq) 
and it may be able to limit the activity of silica within the 
olivine-orthopyroxene range. The calculation procedure de- 
pends on equating activities or chemical potentials, regard- 
less of how these are defined 



Table 10. Analyses of lavas used in Fig. 5 

Ande- Tho- Olivine- Kom- 
site leiite basalt atiite 

Leucite- Potash- 
basanite ankara- 

triite 

SiO 2 61.61 52.29 5 0 . 2 0  4 7 . 9 6  44.54 36.71 
TiO z 0.60 1.17 2.43 0.36 2.16 5.54 
AlzO 3 17.82 14.75 16.65 7.44 15.50 9.30 
FeO~ 4.85 12.25 10.28 11.39 9.15 12.73 
MnO 0.10 0.22 0.24 0.20 0.19 0.26 
MgO 2.54 5.30 3.62 24.35 9.12 6.34 
CaO 5.70 9.89 7.53 7.46 11.14 14.08 
Na20 4.77 2.60 5.27 0.64 4.08 2.40 
KzO 1.43 0.33 2.16 0.06 1.82 6.05 
PzO5 0.20 0.16 0.82 0.03 0.61 1.11 

From left to right analyses taken from: Luhr and Carmichael 
(1980), Philpotts (t979), Brown and Carmichael (1971) Nisbet et al. 
(1977), Brown and Carmichael (1969) and Brown (1971) 

silica activity with decreasing pressure, as shown by the 
dotted line in Fig. 5. 

Also shown in Fig. 5 is the diamond-graphite 
equilibrium curve (Clark 1966) drawn on the assump- 
tion that as olivine and orthopyroxene are found as 
inclusions in diamond (Meyer and Boyd 1972) the P 

- T region of diamond stability in the mantle must co- 
incide with silica activities defined by the assemblage 
olivine-orthopyroxene under the same P - T  conditions. 
Only silicate liquids with very low activities of silica 
are likely to be generated in the diamond field (with 
olivine and orthopyroxene) and in so far as the rock- 
type kimberlite may have a volcanic equivalent, it 
may be broadly similar to these potash-ankaratrites 
from Uganda. 

The general conclusion of the relations displayed in 
Fig. 5 is that the more silica-rich lavas such as tholeiites 
would have a more shallow source than the more sili- 
ca-poor, alkali-rich lavas. This is in accord with current 
petrological belief, although with the solution model 
proposed here it is possible to calculate the equili- 
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bration conditions of any magma with any specified 
Fe203/FeO ratio and any source assemblage using as 
large a number of component activities as can be de- 
fined (e.g. F%Si20 a, Mg4Si208, etc.). 

It may be noted in passing that basic lavas with 
high activities of silica are most voluminous in the 
earth's volcanic economy, whereas the most silica-poor 
lavas tend to be erupted in small volume forming an 
insignificant fraction of the volcanic record, and yet are 
represented by an undue proliferation of rock names. 
These silica-poor, low silica-activity lavas tend to be 
rich in P205, and accordingly in all those other ele- 
ments, such as Ta, Th, U, Hf, Zr and the REE, which 
are highly correlated with P205 (Beswick and Car- 
michael 1978). 

Prediction of enthalpies of fusion 
Measurements of the enthalpies of fusion of minerals of 
geologic interest are for the most part scarce and sub- 
ject to considerable uncertainty. More often then not 
literature values are based upon estimates of entropies 
of fusion, and the attendent uncertainties in the en- 
thalpy can be as large as + / - 1 0 k c a l s / m o l .  It would 
be convenient if fusion enthalpies could be estimated 
more securely as their use in interpreting phase dia- 
grams and in other aspects of petrological modelling 
(c.f. Bottinga and Richer 1978) is extensive. We have 
estimated fusion enthalpies for a number of igneous 
minerals and report them in Table 11. All estimates 
were made on minerals for which some external com- 
parison could be made, and all values of AHfusion are 
excluded from Table 11 that form part of the solution 
model thermodynamic database. The calculations were 
performed by determining for the solid its apparent 
enthalpy of formation at the temperature of melting, 
using the data of Appendix 2. The same quantity is 
computed for the liquid using Appendix 2, the con- 
stants of Table A4-3 and Eq. (13). The liquid mole frac- 
tions are determined directly from the mineral formula. 
The difference between these two calculated quantities 

Table 11. Calculated enthalpies of fusion of stoichiometric simple compounds 

Phase Composition Calculated Measured a Reference 
A H~ (kcals) A H s (kcals) 

Anorthite CaA12Si20 8 29.297 32.4 _+_ 2.1 
Albite NaA1Si30 8 13.005 15.5 
Sanidine KA1Si30 8 19.505 13.11 
Sphene CaTiSiO s 25.750 29.59 
Fayalite FezSiO4 b 18.930 22.5 
Pseudowollastonite CaSiO 3 13.601 13.7 + 0.7 
Enstatite MgSiO 3 18.284 14.7 {E} 

18.0{E} 
19.576{E} 

Diopside CaMgSi20 6 27.510 32.48 
34.435{E} 

Weill et al., 1980b 
Stebbins et al., 1980 
Stebbins and Carmichael, 1981 a 
King et al., 1954 
Stebbins and Carmichael, 1981b 
Adamkovicova et al., 1980 
Robie et al., 1978 
Stull and Prophet, 1971 
Ghiorso and Carmichael, 1980 
Stebbins and Carmichael, 1981 a 
Ghiorso and Carmichael, 1980 

a Or estimated from the fusion curve. {E} 
b At FMQ: XFo163os/Xv~,si2o=O.O44tl (Sack et al. 1981) 

z/H I for Fayalite (Fe2SiO4), Tephroite (Mn2SiO4), Forsterite (Mg2SiO4) and Larnite (Ca2SiO4) were used in constructing the model, 
and are by default satisfied exactly 
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is our estimate of the enthalpy of fusion. A perusal of 
Table 11 will demonstrate that these estimates agree 
quite well with the corresponding measurements and 
fusion curve values reported. This is particularly in- 
triguing when one considers that the calculation of liquid 
properties for compositions corresponding to these min- 
eral formulae is a considerable extrapolation from the 
compositional subspace within which the model was 
calibrated. Fusion enthalpies were not calculated for 
phases which posses negative mole fractions in our 
component space, though this is thermodynamically fea- 
sible (Ghiorso and Carmichael 1980). However, the suc- 
cess of the present calculations should provide a means of 
estimating the liquid properties (H, Cv, G) of a number 
of geological materials as a function of T, P and fo~. 

Prediction of multiphase equilibria 

Liquid immiscibility 
We have already discussed the geometrical arguments 
for the existence of liquid immiscibility in the proposed 
solution model. We now turn to methods of calculating 
coexisting binodal compositions and the extent of the 
inferred liquid immiscibility in natural liquids. Consider 
a liquid whose bulk composition is defined by the mole 
fraction vector X. The total free energy of mixing at X 
is (again using the vector notation of Appendix 4): 

G mix = ?1 x R TX  r in X +  89 G Xr  WX (25) 

where it is understood that the logarithm operator is 
applied to the components of the vector X. Now con- 
sider two arbitrary compositional vectors Y and Z. If 
we require: 

Y > 0  
Z=>O (26) 

and 
n ~ X = n r Y + G Z  

where ny, G, n~ are the number of moles in the phases 
defined by Y, Z and bulk composition X, then the 
condition for two-phase immiscibility is: 

mix mix mix (27) Gatr + Gatz < Gat x 

for some set of finite Y, Z, n r and G- Note that this 
condition is independent of the relative magnitudes of 
the standard state chemical potentials of the liquid 
components. The optimum values of Y, Z, ny, and G - 
the ones that define a binodal tie line - are those which 
minimize the left hand side of Eq. (27). Thus to calcu- 
late whether a given bulk composition generates 
coexisting immiscible liquids we solve the problem: 
minimize mix mix (Gat r + Gat z) 

subject to: 
n~X = ny Y + GZ,  
nyY >O 
and 
~ z  __>o (28) 

and then check to make sure ny and n z are strictly 
greater than zero, Y does not equal Z, and that Eq. (27) 
is satisfied. The ratios G/nx and GIG define the pro- 
portions of each of the coexisting immiscible phases. 
There is no reason why more than two immiscible 
liquids cannot coexist in an n component system (the 
number can never exceed n) and their compositions can 
be calculated or their existence verified using obvious 
extensions of the equations presented here. 

With G mix defined by Eq. (25), Eq. (28) becomes a 
problem in non-linear optimization in 2n unknowns. 
Two of us (Rivers and Ghiorso 1980) have described 
numerical methods useful to the solution of problem 
(28) that utilize the fact that at the minima, which is a 

mix mix (the point stationary or critical point of Gaty+Gat z 
where the gradient - the vector of compositional first 
derivatives - is zero), the second derivative matrix (re- 
ferred to as the Hessian) defines a surface which is 
everywhere convex upward. In mathematical terms the 
Hessian is strictly positive definite. We state the regular 
solution forms of these derivatives here for the con- 
venience of the reader. They may be found in a slightly 
different form elsewhere (Ghiorso and Carmichael 
1980). From 

(~ G mix \ 
- - |  = R T l n a  i 

~Fli ]T,P, nt*i 

and Eq. (10) it follows that: 

~n  i /r,e,,,,~ - R T l n X I + N R T l n T I  

= R T I n X i +  ~ W~jXs 
j=l 

w kxjx  (29t 
j = l  k= l  

and thus 

~ n / 2  jr ,  p,,,. = ~ [ -  ~(~ 2 R r l n  

and 

=I (w~j-RT-RTln?~-RTlnT~). (32) 

Equation (31) is required since the free energy is a path 
independent function. Equations (29), (30) and (32) may 
be used to construct numerical values for the gradient 
vector and the Hessian matrix ~~ for a given Y,, Z, ny 
and G. 
10 In hydrous liquids, for all derivatives not involving the 

component H20 add the term RTXn~o/N (1-Xn~o) to the 
anhydrous quantity. For all other matrix entries subtract 
RT/N from the anhydrous term except for the diagonal 
element that corresponds to H20 for which the term 
R T](1 -- XH2o)/( N XHzo) 
should be added. Appropriate modification to the entries 
of the gradient vector are given by Eqs. (A3q5) and (A3- 
16) 
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We have developed a computer code (part of a 
software package available from the first author) which 
implements a modified Newton-projected gradient type 
algorithm developed by Gill and Murray (1974, for a 
review) to solve the problem posed by Eq. (28). As an 
example let us consider the tholeiite whose composition 
is provided in Table 9. This is a sample of Rattlesnake 
Hill basalt which exhibits liquid immiscibility and 
formed the subject of the experimental study of Philpotts 
(1979). Philpotts derives a composition for the meso- 
stasis of this basalt which is related to the bulk com- 
position by crystallization of phenocrysts of clinopyrox- 
ene and plagioclase. Unfortunately, this mesostasis 
composition can vary considerably depending on the 
extent of crystallization. Philpott's experimental work 
indicates that the mesostasis unmixes to two liquids at 
about 1,313~ one of which is enriched in TiO 2, 
FeOr ,  MnO, MgO, CaO and P205 the other in SiO 2 
and less so in Na20,  K 2 0  and A120 3. Similar trends 
have been found in the lunar lavas and other tholeiites 
(Roedder 1979; Philpotts 1982). In addition Philpotts 
(1979) argues that the mesostasis composition intersects 
the immiscible dome in T - X  space as it becomes 
depleted in the alkalies and alumina. If the bulk liquid 
composition could be made to cool while preventing the 
crystallization of solid phases it should intersect this 
immiscible dome at a lower temperature than the me- 
sostasis. A rough approximation using Philpott's Fig. 11 
(1979, p 116) is about 900~ We have performed the 
calculation just described and predict unmixing into 
two liquids beginning at about 950 ~ C, along the QFM 
buffer at 1 bar. The reported compositions in Table 12 
are those solutions to problem (28) at 1,200K. As the 
final compositions of coexisting immiscible globules 
found in the rocks represent the lowest temperature 
binodal acheived during the crystallization history of a 
greatly silica enriched residuum (Philpotts 1982), it is 
difficult to compare compositions derived from field, 
laboratory or theoretical considerations in any but a 
qualitative sense. That is, there is no guarrantee that 
the three methods of investigation are comparing simi- 
lar events in the crystallization history. In any case, the 
compositional trends reported in Table 12 should reflect 
those seen in experiment and those found in nature. 
The silica-rich phase in Table 12 is enriched in TiO2, 
A1203, Na20 and K20 , while the silica poor phase is 
enriched in total FeO, MnO, MgO and P205. CaO is 
concentrated slightly into the more siliceous phase, 
contradicting available experimental and field evidence 
as does the distribution of TiO 2 into the SiO 2 rich 
fraction. It is not clear why the predicted elemental 
trends deviate from reality on these two points. It is 
probably a consequence of an inappropriate interaction 
parameter or group of interaction parameters in the 
model which create an antipathy, for certain bulk com- 
positions, between MgO or FeO and TiO 2 and CaO 
and FeO. Methods to correct this problem are cur- 
rently under investigation. Immiscible liquid calcu- 
lations on tholeiites of composition quite different from 
the Rattlesnake Hill basalt exhibit the "correct"  distri- 
bution (between phases) of TiO 2 and CaO. We can 
only conclude that there is a strong compositional and 
possibly temperature dependence to the behavior of 
TiO 2 and CaO during two-phase separation and our 

Table 12. Calculated coexisting immiscible liquid compositions for 
the tholeiite of Table 9 (wt%) 

Liquid 1 Liquid 2 

sioz 45.87 53.21 
TiO 2 0.00 ] .26 
AlzO a 9.06 15.28 
Fe203 6.98 t.58 
FeO 18.95 10.05 
MnO 0.95 0.17 
MgO 7.98 5.16 
CaO 8.99 10.04 
Na20 0.59 2.76 
K20 0.00 0.36 
P205 0.65 0.13 

model does not allow generalizations to be made along 
these lines for tholeiites as a whole. 

In performing immiscible liquid calculations for a 
wide range of igneous rock types, we have found that 
most liquids of tholeiitic composition should undergo 
some form of two phase separation close to (within 
100~ their liquidus temperature. More basic lavas 
should be substantially crystallized before their bulk 
compositions intersect the T - X  immiscible dome and 
more acid lavas were never found to undergo two- 
phase separation, even when the metastable liquid was 
"cooled" to 500~ 11 It should be noted, particularly 
for the latter, that these calculations were performed on 
anhydrous compositions. No three- or higher phase 
immiscibility has been calculated for any natural si- 
licate liquid using the current model. Accordingly, nat- 
ural silicate liquids at temperatures close to their li- 
quidus, appear to intersect a two-phase immiscible liquid 
field that encompasses the composition tholeiite. A de- 
tailed description of the binodal surfaces in this region 
must await the computational ability to model crystalli- 
zation phenomena in these liquids. Work along such 
lines is currently in progress. 

Olivine-liquid equilibria 
Ghiorso and Carmichael (1980) have discussed the haz- 
ards involved with interpreting regular solution in- 
teraction parameters, obtained in the manner described 
above - from solubility data, in an extra-thermody- 
namic sense. The inferrence of structural details in the 
liquid or the extrapolation of these multicomponent 
interaction parameters to infer solid/liquid relationships 
in simplified two or three component phase diagrams 
may be misleading. On the other hand, some insight on 
the utility of binary and ternary phase diagrams in 
representing multicomponent solid/liquid equilibria 
can be gained by seeing how these simple systems are 
projected out of this multicomponent solution model. 
That is, what do the simple phase diagrams look like 
when calculated with an appropriate subset of the ther- 
modynamic data and regular solution interaction pa- 

l 1 Calculations have been performed on the silica enriched 
mesostasis compositions of the basic lavas tabulated in 
Philpotts (1982). For these compositions liquid immisci- 
bility into a silica rich and silica poor phase is predicted. 
The elemental partitioning results are similar to those we 
have found for the bulk composition tholeiite (Table 12) 
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Fig, 6. Left: Calculated phase diagram 
for the system Mg2SiO 4-  F%SiO4. 
Open squares define the liquidus, large 
open circles the solidus. Compare with 
the experimentally determined 
pseudobinary of Bowen and Schairer 
(1935). Right: Calculated and measured 
distribution coefficient for FeO/(MgO + 
FeO) between olivine and liquid. Dashed 
line corresponds to that from the 
predicted phase diagram in the left hand 
figure. The solid line has unit slope. The 
data points are discussed in the text 

rameters? As an example of this approach we will 
consider the M g - F e  olivine system. Ghiorso and Car- 
michael (1980) extracted a liquid interaction parameter 
for the Mg-Fe -o l iv ine  system of -24.1  kcals. The size 
of the W was ascribed to the necessity of considering 
all Fe as FeO in the experimental liquids (op. cit., 
p. 330). In this study, despite our provision for calculat- 
ing the correct F%O3/FeO ratio in the liquid, using an 
entirely different set of components and a much expand- 
ed array of experimental liquids, we obtain -29 .0  
kcals (one-half of WFe si2o ~ 4si2o8) This is good agree- 4 .8, g " ' " 1 ment but is apparently in conflict with experlmenta 
data on the olivine system (Bowen and Schairer 1935). 
If this interaction parameter is used together with the 
activity/composition relations for Mg2SiO , and 
Fe2SiO 4 in olivines (Appendix 1), then liquid/solid 
equilibria can be calculated in the system Mg2SiO ~ 
- F e 2 S i O  ~, at oxygen fugacities low enough for most of 
the Fe to be present as FeO. The results of these 
calculations are portrayed in Fig. 6, together with the 
experimental results of Bowen and Schairer (1935) on 
the corresponding pseudobinary system; pseudobinary 
because iron-rich olivine melts incongruently to metal- 
lic iron plus a liquid with small amounts of Fe20  3 (ca. 
2.5 wt. ~o). The calculated system shows a definite mini- 
mum, at an Fe2SiO ~ mole fraction close to that found 
experimentally in the system Ca2SiO4-Fe2SiO 4 (Bo- 
wen et al. 1933). We did not expect our calculated 
phase diagram to coincide with the experimentally de- 
termined one as the value of WMg4Si2Os,Ve4si~o 8 is not 

independent of the other interaction parameters and 
should not extrapolate to produce the binary system. In 
addition this interaction parameter has been calibrated 
from olivine-liquid relations where the whole database 
involves olivines which are more magnesian than iron- 
rich. 

The calculated liquidus-solidus relationships shown 
in Fig. 6 suggest that between pure F%SiO~ and the 
composition of the minimum, liquids are more mag- 
nesian than the co-existing solid; in other words, the 
FeO/(MgO + FeO) ratio of the solid is greater than that 
of the liquid in this composition span. Curiously 
enough, this relationship had been noted in the fayalitic 
phenocrysts of silicic volcanics (Carmichael 1967a), 
from which the development of a minimum, in pro- 
jection, between liquid and solid was postulated. The 
data which led to this observation are also plotted in 
Fig. 6 together with more recent unpublished data and 
some from Mahood (1981) on mildly peralkaline rhyo- 
lites. In each case the microprobe analysis of the olivine 
was used in conjunction with the analysis of the whole 
rock. The latter is assumed to be the liquid compo- 
sition, which is justified since, as the mass of pheno- 
crysts is usually quite small, the composition of the 
residual glass enclosing the phenocrysts will be essen- 
tially the same as the rock itself. The concentration of 
FeO in the liquid was calculated (Sack et al. 1981) at 
the quench temperature and oxygen fugacities given by 
the iron-titanium oxides, and from this the FeO/(FeO 
+ MgO) ratio for each rock was derived (Fig. 6). Clear- 
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ly, there is an indication that in nature this reversal of 
Fe/Mg between olivine and liquid occurs, although a 
systematic analytical error in the over estimation of 
small amounts of MgO in the rocks could cause this. 
Perhaps the more extensive difference for the peral- 
kaline rhyolites is an example of analytical error. 

As the phenocryst assemblage in rhyolites did not 
equilibrate at 1 bar, the effect of pressure on the distri- 
bution of Mg and Fe between liquid and solid can be 
demonstrated by the reaction 

F%Si208 + 2Mg2SiO~ = 2Fe2SiO4 + Mg4Si20 8 (33) 
liquid solid solid liquid 

for which A V can be evaluated at 1,200 K, the typical 
temperature of these rhyolites, by using the volume 
data given in Appendix 2. A V is positive at 1 bar and 
becomes increasingly so with pressure, so that as pres- 
sure is increased, the left-hand side of Eq. (33) is in- 
creasingly favored and a more iron rich liquid coexists 
in equilibrium with more magnesian crystals. The con- 
trast between the FeO/(FeO+MgO) relation of the 
rhyolitic phenocrysts and their rocks and the experi- 
mental pseudobinary olivine system (Bowen and 
Schairer 1935) cannot therefore be ascribed to pres- 
sure. 

The experimental results in the olivine system have 
been a cornerstone of the chemical tradition of phase 
equilibria applied to petrology, and yet one of the most 
salient features of the system, the enrichment of the 
Fe/Mg ratio of the liquid compared to that of the 
olivine has hardly been examined over the whole range 
of basaltic to rhyolitic liquids that precipitate olivine. 
That this reversal in rhyolites, documented in Fig. 6, 
can be predicted from olivine-basaltic liquid equilibria 
is an intriguing consequence of the regular solution 
model. 

Calculation of early crystallizing phases 

The experimental data used for the development of the 
multicomponent regular solution model is an assem- 
blage of solid phases and liquids all of known com- 
position, equilibrated at fixed temperatures. Now we 
wish to reverse the procedure and from the compo- 
sition of the liquid calculate the composition and tem- 
perature at which the solid phase first appears when 
the liquid is cooled. It is conceptually simple to calcu- 
late the composition and amount of a particular solid 
phase precipitating at a particular temperature and 
then recalculate the composition of the liquid to ac- 
count for the amount of solid, iterating the procedure 
until the liquid is completely crystalline. The compu- 
tational details, however, are rather complex and com- 
puter software for this purpose is currently being devel- 
oped. 

As an example of the potential of a thermodynamic 
solution model to perform this procedure, we have 
calculated the precipitation temperatures and compo- 
sitions of olivine and plagioclase in four mid-ocean 
ridge basalts experimentally investigated by Grove and 
Bryan (1983). Their determinations of olivine-, plagio- 
clase-, clinopyroxene-, orthopyroxene- and spinel-liquid 

equilibria in these MORBS did not form part of the 
experimental database. 

The temperature at which any silicate liquid be- 
comes saturated with a solid-solution like olivine or 
plagioclase can be demonstrated by plotting the param- 
eter r e against temperature. This dimensionless quan- 
tity is a function of the thermodynamic affinity of the 
reaction describing the precipitation of the solid-so- 
lution from the liquid. It is unity at saturation, and less 
than unity when the liquid is undersaturated with the 
particular solid. The determination of Z e has been dis- 
cussed in some detail by Reed (1982) where it is defined 
as the sum of the calculated mole fractions of all the 
end-member components which comprise the solid-so- 
lution. In silicate liquids these mole fractions can be 
obtained from the composition of the liquid at a given 
T and P using Eq. (16), the parameters of Table A4-3 
and the thermodynamic data and solid activity/compo- 
sition relations in Appendices 1 and 2. 

In Fig. 7 we have plotted the calculated values of r e 
for plagioclase and olivine as a function of temperature 
in the basaltic liquids studied by Grove and Bryan 
(1983). As can be seen the calculated saturation temper- 
atures are within an average of 8 ~ C of the experimental 
bracketing temperatures (7 ~ , 2 ~ , 3 ~ and 20 ~ for each of 
the four initial bulk compositions). At temperatures 
below the first appearance of olivine from bulk com- 
position AII-96-42-2, the calculated values of r e for 
olivine in these olivine saturated liquids scatter Within 
5 ~ of unity. Though not shown in Fig. 7 this is also 
the case for plagiocase in the plagioclase saturated li- 
quids derived from the other three bulk compo- 
sitions. 

The calculated mole fractions of forsterite (Fo) and 
anorthite (An) in olivine and plagioclase are plotted in 
Fig. 7 against the experimentally determined compo- 
sitions of the precipitated solids. The olivine and 
plagioclase compositions essentially fall within the lim- 
its of analytical error predicted by the Monte Carlo 
simulation of microprobe uncertainty (Table 7, i.e. 1.5 
Fo and 2.2 ~o An respectively). These error limits are 
shown as dotted lines in Fig. 7. Additionally, the pre- 
dicted equilibration temperatures of all the solids with 
their coexisting liquids (not shown in Fig. 7) are within 
the limits given in Table 5. 

Fortified by the close agreement between predicted 
and observed liquidus relations in these basaltic liquids, 
we have attempted similar calculations with the Thing- 
muli succession of lavas. These are believed to be re- 
lated by crystal fractionation to a single liquid line of 
descent (Carmichael 1964, 1967b). This example using 
the Thingmuli lavas is rather simplified in that in per- 
forming the calculations we have not considered the 
precipitation of the spinel phase, which is invariably the 
earliest phase to crystallize in almost all basic liquids, 
and accordingly we have not altered the liquid com- 
position to account for its precipitation. Our neglect of 
the spinels is preliminary, and is due in part to the 
complexity of the activity/composition model for this 
phase (Appendix 1). 

In nature the Thingmuli lava series range from oliv- 
ine tholeiites, through tholeiites, basaltic-andesites to 
icelandites and eventually to the silicic end-member, 
rhyodacite (Fig. 8). They form a distinctive iron-rich 
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series which have iron-titanium oxides among the early 
crystallizing phenocryst assemblage of olivine and 
plagioclase, contained in a groundmass of augite, pigeo- 
nite, plagioclase, F e - T i  oxides and glass. The quench 
temperature deduced from the composition of the 
iron-titanium oxide micro phenocrysts (Buddington and 
Lindsley 1964) for the olivine tholeiites and tholeiites 
(open triangles in Fig. 8) refer to temperatures above 
which only plagioclase, olivine and occasional augite 
occur as early crystallizing phases. We have not pre- 
dicted liquidus compositions for either augite or pi- 
geonite, since for both minerals there is no detailed 
activity/composition model relating the minor con- 
stituents such as A1, Ti and Fe +3 (e.g. Sack and Car- 
michael 1983) with the major cations Ca, Mg and 
Fe § In general, the monoclinic pyroxenes display 
such a subtle diversity of composition that we are un- 
able yet to recalculate from the liquid/solid experiments 

the complete composition of an augite, given just the 
composition of its coexisting liquid and the tempera- 
ture. 

The results of the calculations, at oxygen fugacities 
given by the QFM buffer, and at 1 bar are shown in 
Table 13 and in Fig. 8. In the olivine-tholeiites (nos 1 
and 2) olivine appears before plagioclase, whose calcu- 
lated composition falls within the observed range of the 
plagioclase phenocrysts, whereas in the tholeiites (nos. 3 
to 10), plagioclase precipitates before olivine. The calcula- 
ted temperature for orthopyroxene crystallization (the 
orthopyroxene being always more Mg-rich than the 
olivine) is well below the F e - T i  oxide quench tem- 
peratures, and thus if the orthopyroxene is considered 
as a proxy for pigeonite, is correctly predicted to be 
restricted to the groundmass. By and large the calcula- 
ted composition of both plagioclase and olivine falls 
within the range found in nature. Both would undoubt- 
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edly change composit ion slightly as a result of includ- 
ing spinel in the calculations. Olivine has not been 
found in several tholeiites, presumably because of a 
reaction relationship between olivine and liquid to 
stabilize Ca-poor  pyroxene. This reaction has yet to be 
substantiated in the calculations. 

In the more evolved basaltic-andesites (nos. 11, 12, 
13), icelandites (nos. 14-17) and rhyodacite (no. 18), 
plagioclase is still the earlier silicate phase and in the 
more silica rich lavas (nos. 15, 16, 17) its calculated 
liquidus temperature is almost a hundred degrees above 
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that of olivine. This is an unlikely event for lavas with 
only sparse phenocrysts, and suggests that calculations 
at 1 bar may be inappropriate. The calculated olivine 
compositions tend to diverge from the observed more 
than is acceptable, presumably because the precipi- 
tation of augite and the F e - T i  oxides, which we have 
neglected, has substantially altered the bulk liquid com- 
position prior to their crystallization. The predicted 
liquidus temperatures of the observed phenocrysts of 
augite (Table 13) are consistent with the petrographic 
observation that spinel, plagioclase and augite crystal- 
lize prior to eruption and quenching of the groundmass 
F e - T i  oxides. The agreement between observed and 
calculated plagioclase compositions in these siliceous 
lavas is poor, but unlikely to be close unless water and 
its effects were to be included in the calculations. We 
chose not to estimate these water contents for this 
calculation. The rhyodacite, no. 18, saturates with sa- 
nidine about  100 ~ below the quench temperature, which 
is in accord with its absence as a phenocryst. 

Overall, the calculated liquidus compositions and 
temperatures of the lavas shown in Table 13 and Fig. 8 
represent a preliminary effort to determine the cooling 
history of a whole range of lavas. The agreement is 
good for the olivine tholeiites and tholeiites and wors- 
ens toward the more silica rich lavas. The experimen- 
tal database upon which the solution model is cali- 
brated contains so few experiments on liquids with 
greater than 65 wt. ~o SiO2 and known amounts of dis- 
solved water, that the calculations for phenocryst as- 
semblages in silicic liquids are unlikely to be closely 
predicted even if appropriate estimates of the water 
contents of these magmas could be made. Perhaps the 
preliminary nature of these calculations highlights the 
need for experiments equilibrating solid assemblages of 

Table 13. Calculated compositions and temperatures of early crystallizing phases, excluding oxides, of the Thingmuli, Iceland volcanic 
series, compared to compositions of observed phenocrysts (in parentheses) and Fe -T i  oxide quench temperatures. Data taken from 
Carmichael 1964, 1967b. 

Anal. Olivine Plagioclase 
n o .  

T (K) Mol% (Obs. T (K) Mol% (Obs. 
phen.) phen.) 

T quench Orthopyroxene Clino- 
K" pyroxene b 
(Fe-- Ti T (K) Mol% (Obs. 
oxides) phen.) 

1 1,488 F083 (F083.74) 1,471 Ansi (An81_68) - 1,328 En86 
2 1,465 Fo81 present 1,464 An79 (An81_68) - 1,309 En63 
3 1,407 Fo73 (Fo75_55) 1,439 Any2 (Anso_6o) 1,373 1,277 En77 
4 1,384 Fo69 gdms. 1,436 An69 1,353 1,258 En73 
5 1,385 Fo69 gdms. 1,426 An67 1,353 1,265 En73 
6 1,386 Fo67 1,423 An66 1,267 En71 
7 1,389 Fo68 gdms. 1,413 An65 1,348 1,273 En72 
8 1,397 Fo67 gdms. 1,411 An63 1,358 1,284 En71 
9 t,383 Fo66 - 1,407 An62 1,363 1,271 Envo 

10 1,387 Fo66 - 1,402 An6o - 1,282 EnTo 
11 1,365 Fo64 - 1,389 Ans3 - 1,285 En69 
12 1,350 Fo62 1,391 Anso - 1,277 En68 
13 1,363 Fo63 - 1,397 An55 - 1,271 En68 
14 1,300 Foss - 1,386 An42 (An58.~2) - 1,255 En65 
15 1,227 Fo48 present 1,349 An33 (An52.r 1,210 En59 
16 1,272 Fo~6 (Fo2o_12) 1,374 An37 1,238 1,215 En56 
17 1,248 FO45 (Fo13_9) 1,364 An33 - 1,205 En56 
18 1,143 F039 (Fo33_9) 1,297 An19 (An31) 1,198 1,145 Ens5 

(En51) 1,321 K 

1,309 
1,281 
1,154 

a Temperature derived from one-phase magnetites and ilmenites 
b Predicted equilibration temperatures from observed phenocryst compositions 
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known composition with water undersaturated liquids 
at low pressures (less than 10 kbars). 

Conclusions 
We have presented a new regular solution model for 
the free energy of mixing of natural silicate liquids. 
This represents a significant improvement over previous 
attempts (Ghiorso and Carmichael 1980) in that: 1) the 
model is calibrated from an experimental database of 
equilibrated liquid and solid compositions as a function 
of temperature, pressure and oxygen fugacity, 2) the 
liquid compositions span the compositional spectrum 
of basic lavas, the solids include a wide variety of 
igneous minerals and the component space is not re- 
stricted to a subset of natural liquids, and 3) the re- 
gression techniques used in the model calibration pro- 
cedure incorporate numerical algorithms that insure 
that the values of the model parameters will be stable 
to minor fluctuations caused by experimental uncer- 
tainty in the database variables. 

The model fits the experimental data to the level of 
uncertainty in the thermodynamic constants used in 
constructing the regression equations ( + / -  500 cals). 
Though predominantly designed to treat anhydrous li- 
quids, modifications to strict regular solution theory 
(Eqs. (A3-15) and (A3-16) in Appendix 3) allow ad- 
ditional model parameters to be extracted that ade- 
quately express ( + / -  700 cals) experimental data on 
the solubility of H20  in a number of liquids of basaltic 
to granitic compositions with up to 10wt.% water. 
Solid/liquid equilibria in water-bearing siliceous lavas 
have also been modelled with more limited success. 

The regular solution free energy of mixing model 
has numerous applications. It can be used as a solid/- 
liquid geothermometer in calculating temperatures as a 
function of pressure and oxygen fugacity for the solid 
phases: olivine, plagioclase, orthopyroxene, clinopyrox- 
ene, spinel, rhombohedral oxides (hematite-ilmenite-gei- 
kielite solid solutions), leucite, melilite and potassium 
feldspar. It provides a means of estimating the activity 
of any liquid component (such as silica) as a function of 
T, P,, fo2 and bulk composition, irrespective of the pre- 
sence or absence of solid phases. Additionally, limiting 
law activity coefficients can be estimated for minor 
components in solid phases that coexist with the liquid. 
Examples are provided in the text regarding the activity 
coefficient of the KA1Si30 8 component in plagioclase 
and the partial molar excess free energy (RTlnT) of the 
Mn2SiO 4 component in olivine. 

The shape of the excess free energy of mixing sur- 
face is characterized by a single strongly asymmetric 
multicomponent saddle point with no internal minima 
or maxima. The excess free energy in the compositional 
region of natural silicate liquids is quite negative (<  
- 1 0  kcals). However, because of its asymmetry when 
combined with the symmetric ideal free energy of mix- 
ing surface the overall topology suggests the existence 
of liquid immisicibility. Calculations of the compo- 
sitions of coexisting immiscible liquids for a wide va- 
riety of igneous rock compositions suggest that an im- 
miscible dome in T-composition space underlies basic 
lavas and encompases the liquidus compositions of 
most tholeiites. Predicted elemental partitioning trends 

between coexisting immiscible liquids is in agreement 
with experimental and field evidence with the exception 
of CaO and TiO 2 which are predicted to partition into 
the SiO z rich phase. Quantitative agreement between 
prediction and experiment is difficult to judge under 
the "solid absent" constraint imposed upon the calcu- 
lations. More sophisticated calculations, modelling the 
crystallization sequences of natural liquids - including 
the effects of immiscibility, fractionation and assimi- 
lation, await the development of numerical techniques 
and computer software for minimizing the total Gibbs 
free energy of a multiphase solid/liquid system subject 
to bulk composition constraints. Some results in this 
direction are presented, including the calculation of sa- 
turation compositions and temperatures for a suite of 
four experimentally investigated mid-ocean ridge ba- 
salts and for the Thingmuli volcanic series, but further 
work is needed to include the precipitation of spinels 
and Ca-rich pyroxenes. 

Improvements to the solution model itself await the 
construction of a more extensive database for hydrous 
silicate liquids. In particular, coexisting solid/liquid 
compositions for water-undersaturated natural liquids, 
equilibrated at controlled oxygen fugacities, are badly 
needed. Though uncertainties in available anhydrous 
solid/liquid experimental data need to be reduced, par- 
ticularly through interlab calibration of microprobe 
standards, a real need for better thermodynamic data 
on silicate liquids is obvious. Basic work on the com- 
positional dependence of heat capacity and compress- 
ibility will test the validity of the regular solution 
approximation itself and better data on enthalpies of 
fusion will prevent the solution parameters from having 
to compensate for gross inconsistencies in the standard 
state chemical potentials of the liquid components. 
Such inconsistencies are currently thought to distort 
the topology of the free energy of mixing surface. 

We have written a computer program (in 
F O R T R A N  IV) to perform all of the applications dis- 
cussed in this paper. These include geothermometry, 
the calculation of liquid solution properties (e.g. activity 
of silica), the determination of the existence of two- 
phase immiscibility and the calculation of the com- 
positions of these coexisting immiscible liquids, and 
liquid/solid solubility calculations including the predic- 
tion of the solid composition which would coexist with 
a given liquid, at equilibrium, at a specific T, P and fo2- 
A listing of the program is available from the first 
author. Copies on tape can also be provided at cost. 

Appendix 1. Activity]composition relations in the solids 

In the following summary of activity/composition relations 
adopted for the solid phases the notation a] denotes the 
activity of the i th solid component in the j th mineral phase, 7{ 
the activity coefficient of the i th atom on the jth site, X{ the 
site mole fraction of the i th atom on the jth site, n{ the number 
of i atoms in the mineral formula per jth site, n~ the number of 
i atoms in the mineral formula, R the gas constant in cal/bar- 
K and T the absolute temperature. 

Olivine 
The sub-regular solution model of Wood and Kleppa (1981) 
for the system Mg2SiO 4 (forsterite)-Fe2SiO 4 (fayalite) was 
used to extract the following expressions: 



Olivine z v O c t  Octx2 
aMg2SiO4 = [ ,AMg ~)Mg ) , (A 1-1 a) 

Olivi . . . . . .  Oct Oct\2 (A1 lb) 
aFezSiOa - -  [ A F e  ~Fe ) 

where 

Oct 
- XMg ) (1 -- SMg) ]/(R T) (A 1-2 a) 7Mg = exp [2,000(1 o,t Oct 2 

and 

7o~t = exp [1,000(1 o~t Oct 2 + 2Xvo )(1 -Xve  ) ]/(RT). (A1-2b) 

Equation (AI-1) and (A1-2) demonstrate significant de- 
viations from ideality for the Fe rich olivines over the tem- 
perature range of interest in this study. 

Plagioclase 
Solid-solution in the system NaA1Si30 8 (albite)-CaA12Si20 8 
(anorthite) was taken to be ideal (Kerrick and Darken 1975): 

Plagiocl . . . . .  A (A 1-3 a) 
aNaAiSi308  ~ 2kNa  , 

a Plagi~ = S A a  . (A 1-3 b) 
CaA12Si208 

Recent work by Newton et al. (1980) on the excess enthalpy 
of mixing of plagioclase suggests the following expressions 

aP lag  __ y A  [ 9  y A  ~exp[X2,A(6,746_9,442XAa)/RT] ' NaA1Si308 - -  ~ Na~, ~ - -  ~ ' N a !  
(A1-4a) 

1 A A 2 2 A  A 
aCaAl2Si208Plag =~Xca(1 +Xc ,  ) exp [XN; (2,025 +9,442Xca)/RT ] 

(A1-4b) 

which incorporate ideal entropy terms that account for the 
Al-avoidance model of high-temperature plagioclase. Calcu- 
lations comparing the activity model posed by Eq. (A1-4) 
with that of (A1-3) as a function of temperatures and bulk 
composition demonstrate that deviations from ideality over 
the temperature/plagioclase composition range appropriate to 
this study are small (generally < 5 mol ~o). In addition work 
by Henry et al. (1982) shows that the excess enthalpy of 
mixing demanded by Eq. (A1-4) necessitates an empirical 
"regular" excess entropy term in the liquid in order to satis- 
factorily compute the albite-anorthite binary liquidus loop. It 
is pointed out by these authors, however, that Bowen (1913) 
also computed the A b - A n  loop, in agreement with experi- 
ment, assuming ideal mixing in both liquid and solid, though 
utilizing "fortuitously erroneous" enthalpies of fusion. As the 
liquid solution model adopted in this study allows extreme 
flexibility in our choice of enthalpies of fusion (through in- 
terdependencies with binary interaction parameters), but 
makes no provision for excess entropy terms of the form 
indicated by Henry et al. (1982), we have elected to adopt the 
Kerrick and Darken (1975) model in treating plagioclase solid 
solution. 

Potassium feldspar 
Consistent with our treatment of plagioclase, an ideal so- 
lution model was adopted for the activity of KA1Si30 8 (High 
sanidine) in potassium feldspar: 

a P  . . . . .  iumFeld  "[YA (A1-5) 
KAISi308 = XXK" 

Orthopyroxene 
Ghiorso and Carmichael (1980) adopted an ideal site mixing 
model for the orthopyroxene system MgSiO a (enstatite)-Fe- 
SiO 3 (ferrosilite) based upon Wood (1976) and Newton's 
(1976) treatment of diopside. They write: 

a O r t h o p y r o x e n e  - -  ( y M  1 y M 2 1 1 / 2  
MgSiO3 - -  t xx Mg xx Mg ] , 

aOrthopyroxene __ ( S M 1 S M 2~ 1/2  
FeSiO3 - -  ~ Fe Fe ] 

where 

x M 1  __ H M 1 / [ y l  j _  1 . .  i . .  - -  . . M 1  - - .  M l x  
Mg - -  M g / \  C r ~ t ~ A l ~ ' Y t T i ~ - f t M g  ~ - t l F e  ), 

x M 2  M 2  ~_ M 2  ~t_ M 2 ]  
Mg = nMg / ( n C a  + rtMn + nNa  / nMg - -  rtFe J, 

M1  - -  M1 1 M1 M1 
X F  e _ _ n F e  / ( r tCr  L g n A l + n T  i + n M g  + n F e ) ,  

x M 2  lelM21e - -  M 2  A- FIM2] 
Fe = Fe /~nCa -f-/~Mn - -  nNa  + g/Mg t Fe ], 

R '  HM1 _ _  1 
Mg - -  ~ ( n c a  + nMn + n N a  + nMg [ r i f e  - -  n o r  - -  n T i  - -  ~ n A l ) ,  

y/M2 - -  M1 
- -  g/Mg - -  nMg 

M 2  - -  M 1  
r iFe - -  l iFe  - -  Y/Fe 

and 

R' = nMg/(nMg + rife ). 

Equations (A1-5) are consistent with the more elaborate 
treatment of Sack (1980) at the pyroxene equilibration tem- 
peratures appropriate to this study. 
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(A1-5a) 

(Aa-5b) 

Clinopyroxene 
The ideal site mixing model of Wood (1976) and Newton 
(1976) was used, modified to account for ferric iron-titanium 
coupling by calculating the amount of ferric iron in the 
analysis using the empirical relations of Sack (1982b). The 
activities of the end-member components CaMgSi20 6 (diop- 
side) and CaFeSi20 6 (hedenbergite) were determined in the 
clinopyroxene. If Y~ denotes the number of i cations in the 
clinopyroxene formula calculated on a 4 cation basis, and if 

M=(YA,-- 2 YTI + YNa-- Ycr) 

we have 

YFe + + + = 0 . 0 4  M 

YFe+ + + = 0.02 + 0.054(M -- 0.05) 

Yve + + § = 0.0047 + 0.096 (m - 0.10) 

YFe+ + § =O.O095 +0.017(M--0.15) 

Yve + + + = 0.018 + 0.24(M -- 0.20) 

Yv~ + + + = 0.03 + 0.036(M - 0.25) 

Yve + ++ = 0.048 + 0.48 ( M -  0.30) 

and 

YFe+ + + =M--0.278 0.35<M 

Yvr YF~-- YF . . . . .  

From which it follows 

aCl inopy . . . . . .  = Yca YMg "R', 
CaMgSi206 

YMg + YFe + + 

aClinopy roxene - -  V YFe + + R' 
CaFe + + Si206 - -   9 Ca -y, - -  y -  

Mg-}- F e + +  

for 0_<_M<0.05 

for 0.05 =< M < 0.10 

for 0.10__<M<0.15 

for 0 .15<M<0.20 

for 0.20=<M<0.25 

for 0.25 < M< 0 .30  

for 0.30<M<0.35 

(A1-6a) 

(A1-6b) 
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where 

R r =  
I ( Y M n  + r N a  + r c a  + r F e  + + +  + r M g )  

[I(YMn+ YNa+ Yca+ Y F . . . .  + YMg+ rTi+ Ycr+ rNi+ ral/2)] 2" 

Leucite 

An ideal solution model was adopted: 

a L e u e i t e  yA 
KAISi206  = ~ K '  (A1-7) 

Melilite 

Charlu et al. (1981) report a free energy of mixing for end- 
member  akermanite (Ca2MgSizO7) and gehlenite (Ca2A12SiOT) 
in the melilite solid solution series: 

A G mix = A H e~ - T ( S  c~ - -  2 R X Meliliteca2Mgsi20 7 1-n 2 ~) 

where the excess enthalpy of mixing is given by the sub- 
regular solution expression 

Hr ML ML 2 120(x~L)(1 __ yML]2 (cals) Zl =5'805(1--XAk)(XAk) + "'Ak! 
and the configurational entropy by 

/2 - X ML \ 
+ ( 2 - X M ~ ) I n  t 2 - - ~ ) + ( 1 - - X M ~ ) l n ( 1 - - X A ~ L ) ] .  

We have calculated the quanti ty XA~U~ by assuming that Na, 
K, Sr and Ba are contained on the Ca sites, Mg, Fe + +, Mn, 
Ni and Co preferentially occupy the T1 site, the remainder 
being filled by A1 with excess A1, Si, Ti, Fe +++ and Cr 
divided equally between the T2  and T3 sites. Thus 

X - -  j ( -Mel i l i te  
- -  ~ Ca2MgSi207 
_ _  1 1 1 
- -  n M d ( n u g + ~ n A l +  r i Fe+  + + ~ n T i + ~ n F e +  + + + l n c r  

+ nMn + nNi +nco). 

F rom the free energy of mixing one can show: 

a Meli l i te  X[A X2~ 
Ca2MgSi207 ~ ~,~ - -  ] 

2X(1 - X )  
 9 e x p - 2 ( 1 - X ) q  ( X + 2 )  + l l ' 6 1 0 X ( X - 1 ) Z / R T  

+ 120(1 - 2X)(1 -- X)2/RT].  (A1 ~8~ 
A 

Equat ion (A1-8) was adopted for the Mg-rich component  
of the melilites of this study. 

Spinels 
The activity/composition relations of Sack (1982a, expressions 
provided in Table II) were used to calculate the activities of 
Fe30  4 (magnetite), MgA120 4 (spinel), Fe2TiO 4 (ulvospinel), 
MgzTiO4, and FeAlzO 4 (hercynite) in the spinel phase. The 
relevant expressions for the activities are based upon a "Tern- 
kin" type model for the configurational entropy with a third 
degree Taylor 's series expansion to describe the excess gibbs 
free energy of mixing. These are provided here in their ex- 
plicit form: Let 

- -  sp ine l  __ - -  oct __ o c t _ _  tet __ oct let X 1 =XFe(al)2O 4 - 1  Xcr+3 2XTi XMg 2XMu--XFe+3 , 
- -  sp ine l  - -  tet oct 

X 2 = X M g ( A 1 ) 2 0 4  - -  X M g  + 2 X M g ,  

X _ v - s p i n e l  __ x z o e t  
3 = zx Fe(Cr)204  - -  ~x Cr + 3, 

g = y s p i n e l  __ 9 y o c t  
4 - -  ~x F e ( F e , T i ) 2 0 4  - -  ~ T i  

and 

X 5 - -  X s p i n e l  __ u  
Fe + 3(Fe + 3 ,Fe  + 2)204 - -  xJ- Fe + 3 

where Fe § and Mg are assumed to be randomly distributed 
over tetrahedral and octahedral sites. 

Then 

sp ine l  - -  
a F e A l 2 0  a -  ( 1  + X 4 ) ( 1  - -  X 2 + X 4 ) ( 1  - X5)(1 - X 3 - X 4 -  X 5 )  2 

 9 exp ( [(9,490 - 3.92 T) X 2 X 3 - 5,300 X 2 X 4  

- ( 7 , 2 0 0 - 1 . 3 0 T ) X 2 X  s - 1,800 X2 X4(1 - 2 X 4 )  
+ [(4,600 + 4,500(1 - Xa) ] X 2 

+ [12,400 + 8,400(1 - X4) ] X # 
+ [14,000 - 1,600(1 - X s ) ] X  2 + 11,050X3X 4 
+ 11,850X 3 X 5 + 23,600 X 4 Xs]/RT), (A 1-9 a) 

spine l  __ 
a M g A l 2 0 4  - -  X 2 (1  - -  X 5 ) ( 1  - X 3 - X 4 - X5)2/(1 + X 4 )  

 9 exp([(9,490- 3.92 T)(1 - X E ) X  3 + 5,300(1 - X2)X 4 
+ (7,200 - 1.30 T)(1 - Xz)X  s 
+ 1 , 8 0 0 X  4 I X  2 S 4 + (1  - X 2 ) ( 1  - X 4 )  ] 

+ [4,600 + 4,500(1 - X3) ] X~ 
+ [12,400 + 8,400(1 - X4) ] X]  
+ [14,000 - 1,600(1 - X  s) ] X~ 
+ 11,050X3X 4 + l l , 850X3X 5 
+ 23,600XaXs]/RT), (A1-9b) 

a spinel 1 X 2 X X F e 2 T i O 4 = ( - - S i t  4 - ) ( 1 -  s)(X4+X5) 4 / (1 -X4)  2 
 9 exp ( - (9,490 - 3.92 T) X 2 X 3 + 5,300 X 2 (1 - X4) 

- ( 7 , 2 0 0 - 1 . 3 0 T ) X 2 X  5 + 1,800X2(1 - X 4 ) ( 1 - 2 X 4 )  
+ [4,600 + 4,500(1 - X3) j X 2 
+ [16,600-- 8,400X4] (1 - - S 4 )  2 

+ [14,000-1,600(1 - Xs) ] X52- 11,050X 3(1 - X4) 
+ 11,850X3 X 5 -23,600(1 -X4)Xs] /RT) ,  (A 1-9c) 

aSp ine l  - X 2 t l  -Xs ) (X4+Xs)X4 / (1  + X 4 )  2 Mg(Mg,Ti )204  - -  2 ~, 

 9 exp((9,490-3.92T)(2-X2)X 3 
- 5 ,400(2-  X2)(1 - X4) 
+ (7,200-1,3 T ) ( 2 -  XE)X s 
+ 1,800(1 -- X4)(X 2 + 2X 4 -- 2X 2 X4) 
+ [4,600 + 4,500(1 - X 3)] (X 3) 2 
+ [16,600 + 8,400 X4] (1 - X4) 2 
+ [14,000-1,600(1 - X5) ] X~ 
- 12,650X3(I - X , 0 +  11,850XaXs 
- 23,600(1 - X4) Xs]/R T), (A1-9d) 

a~d3(~14 = (1 - X 2 + X4)(X 4 + X5)X25/(1 + X4) 
 9 exp ( -  (9 ,490-  3.92 T) X 2 X 3 - 5,400 X 2 X4 

+(7 ,200-1 .30  T)X2 (1 - - X s ) -  1,800X2 X4(1 - 2 X 4 )  
+ [4,600 + 4,500(1 - X3) ] X~ 
+ [12,400 + 8,400(1 - X4) ] X]  
+ [13,200+ 1,600X5](1 -X5)2  + 11,050X3X 4 
- 11,850Xa(1 - X 5 ) - 2 3 , 6 0 0 X 4 ( 1  - X 5 ) J / R T  ). (A 1-9e) 



Rhombohedral oxides 
The asymmetric ternary solution parameters of Anderson and 
Lindsley (1981, Table 1) were used to compute activity-com- 
position relations in the system Fe20 3 (hemati te)-FeTiO 3 
( i lmenite)-MgTiO 3 (geikielite). If Y~ represents the number of 
cations on a two cation basis, adopting 
x r h o m  1 

Fe203  = g r F e +  + +,  

xrhom = Yve + FeTiO3 + 

x r h o m  = YMg 
MgTiO3 

then from the expressions for the activity coefficients provided by 
Anderson and Lindsley (1981): 

rhom rhom x r h o m  
a F e 2 0 3  = ])Fe203 F e 2 0 3 '  

a r h o m  - -  rhom x r h o r n  
FeTiO3 - -  ])FeTiO3 FeTiO3,  

a r h o m  __ rhom xrhom 
MgTiO3 - -  ~JMgTiO3 MgTiO3 

(Al-10a) 

(Al-10b) 

(Al-10c) 

Quartz 

The quartz activity 
SiO 2 : 

was taken to be the mole fraction of 

quartz  quartz  (A1-11) asio2 = X s i o 2   9 

Appendix 2. Thermodynamic data and methods of calculation 

In this appendix we present thermodynamic data, equations 
and relevant assumptions used in evaluating equilibrium con- 
stants, K, for reactions discussed in the text of the form: 

M = ~ v i C  i (A2-1) 
i 

(end-member component 
of a mineral solid 
solution) 

(liquid components used 
to describe composition 
of the silicate liquids). 

The v~'s in Eq. (A2-1) are the stoichiometric numbers of each 
of the C~ components in the formula of M. The law of mass 
action for reaction (A2-1) can be written: 

reaction R T l n K  = - AGT, e 
app, i  app, M = - ( ~ v i A G T , v - A G T , p  ) 

i 
(A2-2) 

where AG~rP.Pe 'i and AGarp.Pe TM refer to the apparent Gibbs free 
energies of 'formation at' the equilibrium temperature (T) and 
pressure (P) of the i th liquid component and the solid com- 
ponent respectively. For the solid phase we have adopted an 
expression for the heat capacity of the form: 

C p = a s + b s T +  cS/T 2 + dS/T 1/2 (A2-3) 

which permits the evaluation of AGaTP, Pe'M: 

P 
A gTapp,M __ A T4app, M __ T . ~  M ~r , v  - ~ - - r , v , .  ~or ,v~+ ~ V~(P)dP (A2-4) 

P~ 

where 

b s 
A H a p p , M - -  A I 4 f ,  M a _ ~ s l T  T r ) + ~ - ( T 2 - T r  2)  ~ x T ~ P r  - - ~ a T r , P r t ~  ~ a - -  

-- & ( l / T - -  1/T~) + 2ds(r  1/2 -- TJ/2), (A2-5) 
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S~v ~ = SrMp, + a ~ ln(T/T~) + bS(T - T~) 
- & / 2 ( 1 / r  2 - 1/T~ 2) - 2dS(1/r  1/2 - 1/T~1/2), (A2-6) 

and 

P 1 
V~(P)dP= V ~ , p , ~ ( 1 -  e x p ( -  fi(P-P,))) /f f l>0  

P.  p 
= V~.p,(P-P~) if f i=0 (12-7) 

with 
s s s s 2 2 V;,p = V~.r  e x p [ . o ( T -  T,)+ % / 2 ( T  - T~ )]. (A2-8) 

In Eqs. (A2-4) through (A2-8) H denotes enthalpy; S, en- 
~V 

tropy; V, volume; fi the compressibility [ - 1 / V  and 

e the thermal coefficient of expansion [1/V 0(g3; } ] whichwe 
P 

express as: 

c~=%+~bT. (A2-9) 

The superscript, f, denotes formation from the elements and 
the quantities T~ and P~ the reference temperatures and 
pressures, respectively, which we have chosen to be 298.15 K 
and 1.013 bars. The data and their sources for the evaluation 
of Eqs. (A2-4)-(A2-9) for all the solid phase components con- 
sidered in this study are compiled in Tables (A2-1) and (A2- 
2). These have been selected to be most applicable to the 
temperature/pressure range of interest. Preference has been 
given to calorimetrically determined quantities. Internal con- 
sistency has been acheived by adjusting the AHYrr er as in- 
dicated in Table (A2-1). The method involved will be dis- 
cussed below. 

app, i  Each AGr, P of Eq. (A2-2) has been computed from: 
P 

app,i  app, i  app, i AGT,v = AHT,p. - TST w r + ~ V/r(P)dP (A2-10) 
P,. 

where 

bi(s) 2" 
AHT,F.app i =  AHf ,  i(s)Tr,pr +ai(~)(T/, - T,.) + ~ - ( T f  - Yr 2)  

- ci(~)(1/T~- 1/T•) + 2di(S)(Tf/2 - T~ a/2) 
+ A H  rusi~ J- Ci t T  Tim), (A2-11) Tim,pr t pk - -  

S~..p, = S~:)e, + a i(~) ln( T~/ T,) + bi(~)( T~, - T~) 
- c " ~ ) / 2 ( 1 / T f  - 1/T~ 2) -2di(S)(1/Tf j~ _ 1/T~ 1/2) 

fusion,i  i i + ASrim,e, + Cp ln(T/T~) (A2-12) 
and 
P r 1.0 • 10 -6 

v~(e)dP- VL'~ (P-P~) 0.7551+2.76V~ T/ni [ 
Pr r, 

[1 1.0• -6 1 2 ]  
 9 (P2 -Pr2) 0.7551 i p 2  + 2.76 V~. r/ni 

1 3 pr3)]] (A2-13) "~(P 

with 

V~,T= VdK+ Vj, T +  VbiT 2 (A2-14) 

except for 
P 
[. VSi~  V S ) ~  • 10 6(p2_p2). (A2-15) 

P~ 



Table A 2-1. Enthalpies o f  format ion:  solid phases  

A H(~ ' 298,1 bar) cals + / - -  Adjus ted  A 
ref  A H~'  298.1 bar) cals 

Forster i te  - 518731 (1) 317 -- 518350 -- 381 
Fayali te - 353576 (1) 576 - 352370 - 1 2 0 6  
Tephroi te  -- 413020 (1) 760 - 413020 
Albite - 937916 (1) 870 - 938700 784 
Anor th i te  - 1014110 (1) 747 - 1013700 - 410 
Sanidine - 946358 (1) 805 - 945800 - 558 
Enstat i te  -- 369921 (1) 290 - 369640 - 281 
Ferrosil i te - 284734 (10, 2) -- 283920 - 814 
Diopside  - 767390 (1) 2180 - 765570 - 1 8 2 0  
Hedenbergi te  - 678496 (6) - 680490 1994 
Leucite - 730826 (1, 2) 658 - 728830 - 1 9 9 6  
Akermani te  - 926511 (1) 676 - 927430 919 
Magnet i te  - 284927 (1, 2) 500 - 284630 - 297 
Spinel - 549551 (1) 179 - 551400 1849 
Hercyni te  - 470000 (1) 2032 - 468730 - 1 2 7 0  
Ulvospinel  - 356758 (11) - 358160 1402 
Di-Mg-Ti tana te  - 517300 (8) 1500 - 513440 - 3 8 6 0  
Hemat i te  - 194334 (1, 2) 300 - 194330 - 4  
Ilmenite - 295560 (1) 380 - 296700 1140 
Magnes io t i tana te  - 375850 (8) 1500 - 375580 - 270 
fl-quartz - 220772 (1, 2) 239 - 218140 - 2 6 3 2  

(1) Robie  et al. 1978 
(2) En t ropy  consis tent  with metas table  high T form. Cp extrapolated to 298 K. Tabula t ion of  data  in this manne r  alleviates need 

to compute  low T phase  t ransi t ions below working temperatures  
(3) /T. Cp for high T f o r m  stable above T (K) 
(4) Refi t ted to Meyer-Kel ley form to increase extrapolat ive stability 
(5) Ghio r so  and  Carmichael  1980 
(6) Helgeson et al. 1978 
(7) Kelley 1960 
(8) Stull and Prophe t  1971 
(9) Calculated f rom p = 3.895 g/cc and M W =  120.22 g/mol  

(10) Est imated f rom the l o g K  for the react ion FezS iO4( fa )+S iO 2 ( f l -q tz )~2FeSiO 3 (ferrosilite) repor ted  in Carmichael  and Ghiorso  
(in prep.)  and the da ta  repor ted  above for f l-quartz and fayalite. L o g K =  0.2070-205.1/T 

(11) Carmichael  and Ghiorso ,  in prep.  Vf . . . . .  rote=0.77862+3.0567 x 10 -5  T+6.3138 • 10 -1~  T2; T i n  K 
(12) Ghiorso  et al. 1979 
(13) Birch 1966 
(14) Skinner  1966 (refitted) 
(15) Chase et al. 1974 

Table A2-2. The rmodynamic  data :  solid phases  

s~% ~;~ ~ K -1 

ca l /K-mol  ref  cal /bar-mol  a • 10 5 bTx 10 s 

Forster i te  Mg2SiO 4 22.75 (1) 1.0466 (1) 2.1171 2.5000 (14) 
Fayali te Fe2SiO ~ 35.45 (1) 1.1088 (1) 2.6634 0.5000 (14) 
Tephroi te  MnzSiO 4 39.01 (1) 1.1618 (1) 
Albite NaA1Si30 s 54.11 (I) 2.4003 (1) 1.4378 1.8750 (14) 
Anor th i te  CaAlzSi20 8 47.63 (1) 2.4089 (1) -0 .14630  2.0000 (14) 
Sanidine KAISi30  8 55.66 (1) 2.6064 (1) 
Enstat i te  MgSiO 3 16.22 (1) 0.75220 (1) 2.2269 1.0000 (14) 
Ferrosil i te FeSiO 3 23.66 (10,2) 0.78779 (11) 3.9258 0.080608 (11) 
Diopside  CaMgSizO 6 34.20 (1) 1.5796 (1) 2.1269 1.0000 (14) 
Hedenbergi te  CaFeSi20  6 40.70 (6) 1.6533 (6) 
Leucite KA1Si20 6 34.16 (1, 2) 2.1126 (1) 
Akermani te  Ca2MgSi20 7 50.03 (1) 2.2182 (1) 
Magnet i te  F e 3 0  4 -- 12.34 (1, 2) 1.0641 (1) 
Spinel MgAI20  4 19.27 (1) 0.97395 (1) 
Hercyni te  FeAlzO 4 25.40 (1) 0.97395 (1) 
Ulvospinel  FezTiO 4 40.36 (1) 1.1327 (11) 
Di-mg t i tanate Mg2TiO4 27.51 (8) 
Hemat i te  F e 2 0  3 30.37 (1, 2) 0.72360 (1) 
I lmenite FeTiO 3 25.30 (1) 0.75740 (1) 
Magnes io t i tana te  ' MgTiO 3 17.82 (8) 
f l-quartz SiO 2 8.925 (1, 2) 0.57926 (12) --3.8564 3.8518 (12) 

References as on Table A2-1.  
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Table A2-3. Enthalpies of formation 

zj ar/(~, 2 9 8 , 1  bar) cals + / - -  Adjusted A 
reported ref A/-/(]" 298.l bar) cals 

Sir 8 - 865704 (2, 1) 2000 - 867448 1744 
Ti40 8 - 903204 (1) 2000 - 909543 6339 
A116/308 - -  1067995 (1) 803 -- 1069406 1411 
F e 1 6 / 3 0  8 - -  518224 (2, 1) 800 - 519023 799 
C r 1 6 / 3 0 8  - -  723200 (1) 5333 - 723200 - 
Fe4Si20 8 - 707152 (1) 1152 - 704730 --2422 
Mn4Si20 8 -- 826038 (1) 1520 -- 826038 - 
Mg4Si20 8 - 1037462 (1) 634 - 1036701 - 761 
Ca4Si20 8 - 1110620 (2, 1) 1540 - 1109070 - 1550 
Na16/3Si8/30 8 -- 988667 (8) 2667 - 987623 - 1 0 4 4  
K16/3Si8/30 s -- 986667 (15) 5333 - 990064 3397 
P 1 6 / 5 0 8  - -  575488 (1) 1606 -- 575488 - 
Sr80 8 - 1129048 (1) 1759 - 1129048 - 

References as on Table A2-1 

The no ta t ion  for Eqs. (A2-10) to (A2-15) is identical to tha t  
of Eqs. (A2-4) to (A2-9). In addi t ion Tim denotes  the tempera-  
ture of melt ing (fusion) of the i(s) solid going to the i th liquid. 
The  i(s) solids were selected to be the stable form (minerals if 
possible) at  T~, P~, here 298.15 K and  1.013bars. Equa t ion  (A2- 
(A2-13) is the in tegrated form of 

(1 1.0 x 10-6 v (P) = p~ o.755  i 
[ l ' 0 x 1 0 - 6  1 2] 

 9 P 0 .7551+2.76V~,r /n  ~ ~ P  (A2-15) 

where n~ is the n u m b e r  of a toms in the formula  uni t  of the i th 
component .  Equa t ion  (A2-15) was cal ibra ted by examining 
the pressure dependence  of l iquid volumes deduced from an 
examina t ion  of available fusion curves. 

The  da ta  and  their  sources for the evaluat ion  of Eqs. 
(A2-10)-(A2-15) for all the l iquid compoment s  considered in 
this s tudy are compiled in Tables (A2-3) t h r ough  (A2-5). The 

criteria used in selecting entries for Tables (A2-3) and  (A2-4) 
are identical  to those for the solid componen t s  of the minera l  
phases, discussed above. The  enthalpies  of format ion  have 
been adjusted to acheive internal  consistency as described 
below. The  the rmodynamic  data  for the liquids (Table A2-5) 
are m u c h  more  poorly known;  in par t icular  high uncer ta in-  
ties exist in entropies and  hence enthalpies  of fusion 
- rTfusion. i  ~ i  ~ o f u s i o n ,  i~ ~ 1  dlTT~,Pr =lmZl'3T~ Pr )" t h e  data  of Table  (A2-5) are con- 

s is tent '  wi th  availa~ble fusion curves for natura l ly  occurr ing 
silicates (see Ghio r so  and  Carmichael  1980). For tunate ly ,  the 
sensitivity of the results of the present  model l ing to large 
uncertaint ies  in the liquid t he rmodynamic  proper t ies  is small. 
These uncertaint ies  t ransla te  directly into the in terac t ion pa- 
rameters  (Table A4-3) extracted from the exper imenta l  data. This 
allows the magni tude  of the individual  in teract ion parameters  
to vary monoton ica l ly  with changes in the enthalpies  of fu- 
sion while al tering the overall  solut ion model  bu t  slightly. 
Thus  a t tempts  to render  the da ta  of Table  (A2-5) internal ly 
consistent  by adjust ing ~,f~io. ASrm, p r proved irresolvable. 

fl(s) bars 1 

• 1 0  6 ref a 

Cp (s) Cals/K-mol 

b x l O  3 T c x l O - 5 / T  2 d/] /T ref 

0.79 (13) 54.489 0.81594 - 2.1366 -416 .97  
0.91 (13) 36.510 9.3600 - 6.7000 

39.255 3.7477 - 9.1147 
1.48 (5) 67.329 8.9172 - 20.354 
1.50 (13) 63.311 14.794 - 15.440 
1.82 (13) 65.908 10.209 - 19.324 
1.01 (13) 49.130 -3 .0583 2.8504 -549 .16  
1.00 (11) 21.000 9.0000 
1.07 (13) 52.870 7.8400 - 15.700 

54.810 8.1700 --15.010 
46.958 6.6123 29.304 
60.090 11.400 - 11.400 

0.56 (13) 23.141 12.604 134.83 
0.41 (13) 53.277 1.4643 - 4.0289 --370.75 
0.41 (assumed=to  spinel) 53.788 2.6660 - 2.1705 --369.41 

33.340 15.080 -- 3.4000 
36.380 8.1730 -- 7.2577 

0.60 (13) -- 261.88 65.170 - 244.72 8116.6 
0.56 (13) --0.71451 15.547 - 12.203 579.97 

28.280 3.2900 -- 6.6047 
0.92887 (12, 1000 K) 14.084 2.3975 

(1) 
(6) 
(1, 4) 
(1, 4) 
(6) 
(1, 4) 
(1) 
(6, 3/413) 
(6) 
(6) 
(1, 3/955) 
(6) 
(1, 3/848) 
(1) 
(1, spinel-MgO + FeO) 
(7) 
(8, fitted) 
(1, 3/950) 
(1) 
(8, fitted) 
(12, 3/848) 
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Table A2-4. Thermodynamic properties: units: cal/K-mol 

a b x l 0 3  T cxlO-S/T 2 d / ]~  

Si40 8 (cristobalite) 48.61 (2, 1) 69.556 1.2432 -39.503 0.0 (1,3/523) 
Ti40 8 (rutile) 48.08 (1) 60.304 10.810 - 9.4289 -5.3692 (1) 
Al16/30 8 (a-corundum) 32.45 (1) 100.293 0.45827 - 12.090 - 629.73 (1) 
Fe~6/30 8 (hematite) 80.99 (2, 1) -698.32 173.79 -65.259 21644.0 (1, 3/950) 
Cr16/30 s (eskolaite) 51.73 (1) 75.856 0.60525 - 9.1899 -2.1698 (1) 
F%Si20 a (fayalite) 70.90 (1) 73.020 18.720 - 1.3400 0.0 (2) 
Mn4Si20 8 (tephroite) 78.02 (1) 78.510 7.4953 -18.229 0.0 (1, 4) 
MgeSiaO 8 (forsterite) 45.50 (1) 108.977 1.6319 - 4.2733 -833.94 (1) 
Ca,~SiaO 8 (fl-larnite) 36.44 (1, 2) 98.000 0.0 0.0 0.0 (1, 3/1800) 
Nal6/3Sis/30 8 72.56 (4) 83.040 25.600 - 17.253 0.0 (7) 
Ka6/3Si8/30 8 93.15 (4) 79.280 44.933 - 9.5467 0.0 (7) 
P16/508 44.18 (1) 13.400 86.402 0.0 0.0 (1) 
SrsO 8 106.16 (1) 106.44 10.443 - 5.3164 -289.14 (1) 

Sources: As on Table A2-1 

Table A2-5. Thermodynamic properties 

r~/(K) ~ S~ C'~ v ~ 
[cal/mol-K] [cal/mol-K] 

a cal/mol-bar b x 104 
cal/mol-bar-K 

Si40 8 (cristobalite) 1,996 (3) 3.908 (3) 83.16 (2) 2.604 (1) -0.1294 (1) 
Ti40 8 (rutile) 2,143 (4) 39.20 (4) 106.96 (2) 1.202 (1) 5.740 (1) 
Al16/30 s (c~-corundum) 2,327 (5) 32.08 (5) 65.71 (2) 1.767 (1) 3.397 (1) 
Fe16/30 8 (hematite) 1,895 (3) 34.80 (11) 122.27 (12) 2.173 (1) 3.659 (1) 
Cr16/30 8 (eskolaite) 2,603 (6) 31.76 (6) 100.00 (6) 1.854 (9) 
Fe4Si20 8 (fayalite) 1,490 (3) 29.57 (3) 114.60 (2) 1.920 (1) 2.834 (1) 
Mn4SizO 8 (tephroite) 1,620 (3) 26.46 (3) 116.20 (3) 2.584 (9) 
Mg4SizO 8 (forsterite) 2,163 (10) 37.61 (10) 128.06 (2) 2.238 (1) 0.8797 (1) 
Ca4Si20 8 (fl-larnite) 2,403 (1) 20.81 (12) 118.96 (2) 1.859 (1) 5.923 (1) 
Na16/3Si8/30 8 1,362 (4) 24.24 (4) 113.01 (2) 2.859 (1) 4.170 (1) 
K16/3Si8/30 8 1,249 (4) 25.62 (4) 114.67 (2) 3.456 (1) 7.138 (1) 
P16/508 853 (8) 10.68 (8) 93.60 (2) 2.272 (9) 
SrsO 8 2,938 (3) 49.02 (3) 128.00 (6) 3.955 (9) 

(1) Regressed from data in Table 3 of Nelson and Carmichael 1979 and Table 3 of Mo et al. 1982, V mlx~ng = 0 
(2) Carmichael et al. 1977 
(3) Robie et al. 1978 
(4) Stull and Prophet 1971 
(5) Chase et al. 1974 
(6) Chase et al. 1975 
(7) Chase et al. 1978 
(8) Extracted from Hill et al. (1944) through application of freezing point depression equation 
(9) V ~ assumed equal to V s at 298.15 K, I bar. Data from Robie et al. 1978 

(10) Ghiorso and Carmichael 1980 
(11) Estimated from ASr of FeO, Wustite and Magnetite reported by Robie et al. 1978, by plotting ASy/g-atom against the Fe/O 

ratio in the solid and extrapolating to Fe20 3 with a straight line 
(12) Estimated 

Internal consistency of enthalpies of formation 

The enthalpies of formation (A HTr and ~A ~zlLlf ,i(s)Tr,Pr 1"1 Of Tables 
(A2-1) and (A2-3) were adjusted (generally within their un- 
certainty, as indicated) for internal consistency between the 
thermodynamic and experimental data and the solution mod- 
el. This was performed by forcing the average deviation of 
each solid component  - liquid equilibria from the modelled 
free energy surface to zero using the following method. For 
any M (Eq. A2-1) used in calibrating the model the left-hand 
side of Eq. (A2-2) can be predicted from the experimentally 
determined composit ion of the solid solution involving M 

and its coexisting liquid, the activity/composition relations of 
Appendix 1 and the interaction parameters of Table (A4-3) - 
see Eq. (17) of the text. Let us call this predicted quantity 
RTlnK'  which is just  a measure, in calories, of the deviation of 
this particular experimental result from the calibrated so- 
lution model. In the vernacular of least squares it represents a 
residual. Now if the solution model works equally well, on 
average, in predicting liquid/solid equilibria for any M (that is 
the residuals are randomly distributed about the data base) 
then the quantity 

RTlnK - R T l n K '  (A2-16) 



should on average be zero for any M. It must by definition 
be zero for the sum of all M's used to calibrate the model (i.e. 
the sum of the positive must equal the sum of the negative 
residuals). We have attributed average deviations of the form 
of Eq. (A2-16) to inconsistencies amongst the thermodynamic 
data with the largest uncertainties, that is the reported en- 
thalpies of formation of Tables (A2-1) and (A2-3). Let the 
average deviation due to individual residuals of the form (A2- 
16) for the M th solid component be denoted: AH~ r, then from 
Eq. (A2-2) we may write a statement like 

A He~rtr = ~ v i A H~[r~f '~- A H~f~f TM (A 2-17) 

for each of the M solid components. Inspection of Table (A2- 
1) will reveal that 20 statements of Eq. (A2-17) can be con- 
structed from the residuals of a least squares calibration of 
the solution model. These 20 equations involve 29 variables 
(20AH$~ y'M and 9AH~~ In addition coexistence be- 
tween-orthopyroxene a~r]d ~ olivine in some experimental 
charges provided two more statements like Eq. (A2-17) 
involving ALle~ Al4c~ A Llc~176 

~ T r , P r  ' ~ T r , P r  ~ ~XTr ,Pr  
A ~T err A ~ c 0 r r ,  f ,  f e r r o s i l i t e  AH rcorr,Pf, fayalite and A H e r r  
~ ' E n - F o , e q u i l ,  ~XX Tr,Pr ' r, r Fs-  Fa, equil" 
These last two equations, when satisfied exactly and coupled 
with those already mentioned define an under-determined 
least squares problem involving 20 equations and 27 un- 
knowns. After each least squares calibration of the solution 
model we determined a solution to this under-determined 
system using the computer code LSEQIEQ (Ghiorso 1983) and 
adjusted the enthalpies of formation accordingly: 

d gtf . . . . .  AH f'~ + AH ..... f ~ Tr, Pr --  Tr, Pr Tr, Pr " 

The process of model calibration with subsequent adjustment 
of enthalpies of formation was repeated until the average 
residual for each solid component (AH;} r) remained un- 
changed (and in all cases was less than 100 cals). The adjusted 
enthalpies of formation reported in Tables (A2-1) and (A2-3) 
reflect this condition. It is encouraging to note that the ma- 
jority of these adjustments (column labeled A) are within the 
indicated two standard deviation reported uncertainty. Excep- 
tions probably reflect inappropriate experimental data or acti- 
vity/composition relations for the solids. 

Appendix 3. Modifications for hydrous liquids 

In modelling activity/composition relations in hydrous liquids 
we have entertained the possibility that H20  does not behave 
as a regular solution component (as there is no experimental 
evidence to suggest this). We must therefore modify Eq. (8) to 
have the form 

n 
G ( l i q u i d ) =  i #Oi ni-~ x i z  2 XilnXi 

i = 1  i = 1  

+N/2 ~ ~ WuX~Xj+Nf(Xw) (A3-1) 
i l j - 1  

where f(Xw) is some, yet to be specified, function of the mole 
fraction of H20  (Xw) and represents the potential departure 
of hydrous liquids from strictly regular solutions. From Eqs. 
(A3-1), (2), (3) and (4) it follows that 

a . . . . . .  =N/2 ~ ~ WuXiXj+Nf(Xw). 
i = l j = l  

(A3-2) 

Differentiation of Eq. (13-2) with respect to the number of 
moles of water in solution generates an equation for the 
partial molar excess free energy (RTlnyw) of water dissolved 
in a silicate liquid (where Wn~o, i is written Ww~): 

137 

c3G . . . . . .  ) 
RTln7~ = _ _  

~ nw ~T,P,other nl 
n n n 

Ww~X,-~E E %x, xj 
i = 1  i = 1  j = l  

+N(~f(Xw)l +f(Xw). (13-3) 
\ ~nw ]T,P,otlaer i 

If we let 

C '=exp  Z WwiXi--  89 ~ ~ W i j X i X  j R T  (13-4) 
i_  i = 1  j = l  

then 

7~ = C' exp [N(af(Xw)] +f(Xw)]/RT. (13-5) 
L \ anw  ]T,P,oth . . . .  J ~  " 

Finally we have 

a,~=y,Xw. (A3-6) 

The solubility data of Hamilton et al. (1964) has suggested to 
many authors that at low water contents the activity of water 
is best represented by 

a, = C" X~ (13-7) 

where we have C" as a constant slope, thus: 

~w=C"X~. (13-8) 

At higher water contents, however, it appears that C" is a 
slowly varying function of water mole fraction. Nicholls 
(1980) has developed equations similar to (A3-1) through 
(A3-8) and proceeded to describe water solubility in magmas 
by defining a C" in terms of regular solution theory and 
anhydrous bulk rock composition. This has met with con- 
siderable success in reproducing the solubility measurements 
of water in several silicate melts (Nicholls 1980, Table2). 
Recently Stolper (1982a and b) has pointed out that the 
dissociation of H20 into hydroxyl groups in silicate liquids, a 
structural model which is consistent with Eq. (A3-7), does not 
accurately describe water 
tents, and thus it follows 
be some function of X w. 
speciate dissolved water 
units as Stolper suggests, 
liquid database we have 

solubility at high total water con- 
that C" itself in Eq. (A3-7) should 
Though it would be preferable to 
between molecular and hydroxyl 

in lieu of a more complete hydrous 
adopted the not inconsistent for- 

mulation that the C" of Eq. (A3-7) be described by regular 
solution theory which includes component interaction terms 
for water (i.e. finite Wwi's ) and allows C" to be a function of 
X w. Departing now from the approach of Nicholls (1980) and 
combining Eqs. (A3-5) and (A3-7): 

C"Xw= C'exp{ [N  ( Of(Xw)] + f ( X , ~ ) ] / R T } .  (13-9) 
\ ~nw ]T,P,othernl 

We now let C"=  C' C"  where C'" is an arbitrary constant or 
at most a function only of X~,, and Eq. (A3-9) becomes 

RT . . . . . . . . .  (Of(X,~)] + f(Xw) 
ln2kwl-~ =1~ \ ~nw /T,P,othernl 

= (t?Nf(Xw~) ) (A3-10) 
k Onw / T  P o t h e r n  " 

Thus : 

nw nw 
Nf(Xw)=Rr ~ lnXwdnw+ e r  ~ In C" dn w 

0 0 
at constant T, P, nj 4: n w. (A3-11) 
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The first integral in Eq. (A3-11) can be readily evaluated to 
yield: 

N f ( X , ~ ) = R T [ n ~ , l n n w - n w - N l n N  + N 
+ ( N -  n~) l n ( N -  nw)- ( N -  n~)] 

nw 

+ R T  ~ In C'" dn w 0 
o r  

f (Xw) = R T [ X ~  In X ,  + (1 - X~) ln(1 - Xw) ] 
nw 

+ RT/N ~ in C'" dn w. (A3-12) 
0 

Substituting Eq. (A3-12) into Eq. (A3-3) we have for the 
partial molar excess free energy of water in a hydrous silicate 
melt: 

RTlnTw= ~ WwiXi- 89 ~ ~ WqXiXj 
i = i  i=1 j = l  

+ RTln  C'" X w. (A3-13) 

Differentiation of Eq. (A3-2), with Eq. (A3-12) substituted in 
for f(X~),  with respect to n k (where k # w )  yields the partial 
molar excess free energy for an anhydrous component in a 
hydrous liquid (to be compared with Eq. 10): 

RTlna  k =RTlnXk  + RTln7 k, 

RTlnTk= ~ WkiXi-- 89 ~ ~ W~jXiXj 
i= I  i = 1  j = l  

nw 
2 tr, +RTIn(I-Xw)-RT/N ~ InC dn~ 

0 

For our purposes we have chosen to set C'" equal to unity, 
and hence for hydrous liquids the relevant activity compo- 
sition relations are: 

RTlnTw=~W~,Xi- 89 ~W~,XiX,+RTlnX w (A3-15) 
i=1 i = i  j = l  

and 

R T l n 7  k = ~ VgkiXi-- 89 ~ Z WuXiX, 
i = 1  i = 1  j = l  

+ e Tln(1 - Xw). (A3-16) 

In order to compute hydrous-liquid/solid phase stability or 
water solubility using Eq. (17) we need additional thermody- 
namic data not provided in Appendix 2 on the standard state 
properties of water. The chemical potential of the supercriti- 
cal fluid at the temperatures and pressures of interest were 
computed from data in Robie et al. (1978) using the in- 
terpolation equations of Nicholls (1980). Similarly, the pres- 
sure dependence of the chemical potential of dissolved H : O  
has been obtained from Nicholls (1980, Eq. 13). The paucity 
of available data does not warrant a more elaborate treat- 
ment than do adopt an expression of the form 

(A/T+B).  RT=#~ (A3-17) 

to describe the 1 bar temperature dependence of the standard 
state chemical potential of dissolved H20  (Nicholls 1980). 
The best value for B extracted from the water solubility data 
by Nicholls (1980) is 18.3527. We have adopted this number 

but determined independently a value for A (essentially the 
average enthalpy term) as part of the hydrous interaction 
parameter calibration procedure (see Appendix 4), to allow 
for greater flexibility in fitting the data. Our value of 
-38,304.7 is just outside of two standard deviations of 
Nicholl's - 34,345.9. 

Equations (A3-15) and (A3-16) encapsulize our descrip- 
tions of activity/composition relations in hydrous silicate li- 
quids. 

Appendix 4. Construction of the regression equations 
and the estimation of the binary interaction parameters 
From the considerations detailed above and the experimental 
database it is a straight forward matter to construct the 
quantities found on the left hand side of Eq. (17). Let us label 
this quantity using the scalar variable b. The chemical re- 
actions corresponding to Eq. (17) for the various liquid/solid 
equilibria considered in this study are provided in Table A4- 
1. We have also indicated in Table A4-1 the coefficients (v~'s 
in Eq. 17) which proceed the mole fractions and interaction 
parameters on the right hand side of Eq. (17). In addition, the 
sum of the vi's is provided for each solid/liquid equilibria. 
With the coefficients of Table A4-1 Eq. (17) can be written for 
any solid/liquid equilibria with only the Wu's remaining as 
unknowns. To see how these Wu's can be best approximated 
from the database we must restate Eq. (17) with our definition 
for b 

n n 

b= Z v, ~ WiiXj-  89 ~ v, ~ ~ W~kX.iX k (17') 
i= l  j=~ i= ,  j = l k = l  

in to vector notat ion.  Let x T  define a row vector of  mole 
fractions of  length n (i.e. s the T 
means transpose, that  is X w i thou t  the T is a vert ical or 
co lumn vector), ~T defines a row vector of  n-zero entries 
except for the i th place which contains a one (i.e. ~2 r = [0 1 0 
0 ... 0], with n entries) and let W define a symmetric matrix 
of interaction parameters: [ W~l w,2 w,3 ... 

w22 w23 ... 
W ~  9 

[ ~  w.2 W.~ ... vr 1 w.. j 

(A4-1) 

where as before Wu= W;i, and Wii=0. With these definitions 
, J  

Eq. (17') can be written 
n 

b= ~ v~bTWX - ~ v~ 89 (A4-2) 
i = 1  i = 1  

where it should be appreciated that we are dealing with 
mixed scalar (vl) , vector (61,X), matrix (W) multiplication. 
For  convenience we will define the vector 

vT= ~ v~,Sr~ (A4-3) 
i = 1  

and the scalar 
n 

V ~ Z V i  
i = 1  

to write Eq. (A4-2) in the form 

b= VTWX -- 89 
o r  

b = (V T - v/2 xT) WX, (A4-4) 
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Now the unknowns in Eq. (A4-4) are the elements of the 
matrix W. If these are to be approximated using some con- 
ventional technique like least squares, we must first arrange 
the elements of W into a vector. 12 To see this we employ 
matrix algebraic techniques which are discussed at length in 
Graham (1981). We define an operator vec( ) which makes a 
matrix into a vector: 

i-w1 - 
' W21 

W~ 
Wl~ 
w ~  

vec(W)= " 
W.~ 

w2n 
%. 

by stacking up the columns from left to right 9 In addition we 
will use the direct product operator ~ 3, | and an identity from 
Graham (1981) [vec(PQR) = (R | P) vec(Q)] to operate on Eq. 
(A4-4): 

vec(b) = vec [(V r - v/2 X r) WX]  
b = IX  r | (V r -  v/2Xr)] vec(W) 

or simplifying 

b = (X r | V r - v/2X r | X r) vec(W). (A4-5) 

Equation (A4-5) is in a proper form for least squares. Notice 
that the dimensions of the matrices x r |  r and X r |  r 
are 1 by n 2 and the length of the vector vec(W) is n 2. Each 
solid/liquid equilibria yields one statement of Eq. (A4-5). In 
the experimental database defined above, let there be p such 
equilibria. The p statements of Eq. (A4-5) can be assembled, 
stacked one on top of each other, as: 

b~ = (X~ | V r -  v l / 2 X  I | X~)vec(W) 
b 2 = ( X  T @ vT. - V z / Z X  r | X r) vec(W) 
 9 . . (A4-6) 

bp = (x~ | v 7 - ~p/2)c~ | xF)vec(wl. 

If B denotes the p-vector of bi's and F the p by n 2 matrix of 
coefficients preceeding the elements of vec(W), then Eq. (A4- 
6) may be written: 

12 In conventional least squares equations of the form A X  = B 
are solved, where X is a vector of unknown coefficients, B 
is a dependent variable vector, and A is a matrix of inde- 
pendent variables, one row of which corresponds to each 
observation 

13 Consider two arbitrary matrices A and B. For convenience 
let 

A = [ a ~  a12] 
ka21 a22J 

-a l ib i1  
allb21 A |  
a2~blj 
a21b21 

bll  b12] then 
and B=  b21 b22J 

alibi2 al2bll a12612] 
allb22 a12b21 a~2b221 
a21612 azzbl l  a22b12 / 
azlbz2 a22b21 azzbz2J 

B = F vec(W). (A4-7) 

This least squares problem, subject to the constraints W~j 
=Wji and Wii=0 is the basis upon which the binary in- 
teraction parameters are calibrated from the experimental- 
/thermodynamic database 9 The solution of Eq. (A4-7) for 
vec(W) could not be effected using conventional least squares 
techniques and necessitated the development of new computer 
software (Ghiorso 1983) whose numerical algorithms are root- 
ed in generalized inverse theory (Lawson and Hanson 1974). 
In order to appreciate why this is so we first must comment 
upon data uncertainties and their effect on the numerical 
stability of the matrix E 

Several constituents of the experimental liquids vary so 
slightly in their abundances between samples or so in- 
frequently have non-zero abundances that we have opted not 
to include interaction parameters involving them in the mod- 
el. These components were treated as ideal diluents and will 
be referred to as inactive 9 They are designated as the un- 
starred components of Table 4. Of the active component set, 
H20 occurs so infrequently in the database that the anhy- 
drous and hydrous interaction parameters were calibrated sep- 
arately. Under these conditions no solid/anhydrous-liquid 
pair was seen to control the solution excess terms of Fe16/30 8 
or Mn4Si20 8. The latter component, though generally of 
finite concentration, varies but little in abundance throughout 
the dataset, while the former unfortunately assumes small 
values that are generally uncertain by the amount present 9 
This fact can be easily demonstrated by propagating un- 
certainties through the equations of Sack et al. (1981) 9 A 
general error propagation analysis was undertaken and the 
results indicate that the average uncertainty in the elements 
of the matrix F is on the order of 1-5 ~ (with the exception 
of ferric iron, which is much larger). These stem largely from 
analytical uncertainties in composition (determined by elec- 
tron microprobe) 9 Uncertainties in the vector B arise from 1) 
the thermodynamic data of Appendix 2, 2) the activity/com- 
position relations of Appendix 1, and 3) the analytical un- 
certainties in determining the compositions of both liquids 
and solids 9 Error analysis reveals that the major source of 
uncertainty lies in enthalpy values for both the liquid and 
solid. We have attempted to eliminate the latter by generating 
an internally consistent set of solid enthalpy of formation 
data for the phases concerned 9 The details are presented in 
Appendix 2. Uncertainties in the enthalpies of the liquid com- 
ponents are a consequence of imprecisely known enthalpies of 
fusion. Fortunately, however, large inconsistencies amongst 
the adopted enthalpies of fusion translate linearly into the 
interaction parameters. Computer experiment has shown that 
the shape of the free energy of mixing surface is distorted to 
account for these inconsistencies 9 Some of the difficulties with 
the surface shape (i.e. immiscibility) which are discussed in 
the text probably stem from this source of uncertainty 9 Values 
for the enthalpies of fusion cannot be extracted from the 
database however, since large variations in their magnitude 
do not substantially alter the quality of the fit. Another 
source of uncertainty in B arises when the poorly known 
concentrations of trace constituents are used to define acti- 
vities of end-member components and hence statements of 
Eqs. (17) or (A4-5). To alleviate this difficulty we have adopt- 
ed a set of exclusion criteria that rejects a solid/liquid equi- 
libria from contributing to Eq. (A4-7) if the concentration of 
any element defining the end-member component's activity 
for that solid phase drops below a certain tolerance 9 These 
tolerances are provided in Table A4-2. These carefully chosen 
exclusion criteria limited the compositional uncertainties in- 
herent in the elements of the vector B. 

In a least squares problem uncertainties in data can 
translate into erroneous and wildly unstable values for the 
coefficients of the solution vector 9 These effects can be mini- 
mized if some provision is made in computing the least 



Table A4-2. Wt% concentration for exclusion (< constraints) 

Forsterite MgO < 1 
Fayalite FeO < 1 
Albite Na~O < 1 
Anorthite CaO < 1 
Sanidine K 2 0  < 1 
Enstatite MgO < 1 
Ferrosilite FeO < 1 
Diopside MgO < 1 
Hedenbergite FeO < 1 
Leucite none 
Akermanite MgO < 1 
Spinel MgO < 1 or A120 3 <5 
Hercynite FeO < 1 or A120 3 < 5 
Ulvospinel FeO <1/2 or TiO 2 <3 
Di--Mg Titanate MgO < 1/2 or TiO 2 < 3 
Ilmenite none 
Geikielite MgO <2 
Quartz none 

squares solution that recognizes the cause of this instability. 
This in fact ends up being an attempt to extract the "true" 
number of independent variables the problem contains. This 
number is referred to as the pseudorank of the least squares 
problem. One either states the answer in the reduced number 
of variables, thereby offering a solution in fewer variables 
than the proposed model, or by determining the linear de- 
pendencies amongst the variables, computes a solution vector 
whose coefficients are linearly related. The former approach 
has given rise to the technique of stepwise regression and was 
used by Ghiorso and Carmichael (1980) to solve their least 
squares problem and extract values of the W~j. Because, in 
stepwise regression, there is little control on the order of the 
coefficients extracted, dubious numerical significance may be 
placed upon interaction parameters which have little com- 
positional significance. We believe this underlies the failure of 
the Ghiorso and Carmichael (1980) equations to adequately 
express the details of liquid immiscibility and solid/liquid 
equilibria amongst phases other than olivine and plagioclase. 
The failure lies, as one might suspect, in extrapolating the 
shape of the free energy surface and defining its derivatives 
into compositional volumes outside the database. For these 
reasons, in the present treatment, we have utilized the com- 
puter code LSEQIEQ (Ghiorso 1983) to extract a pseudorank 
based upon data uncertainty and solve Eq. (A4-5) in a least 
squares sense (subject to W/j= Wji and W/i=0) to generate a 
complete set of interaction parameters which exhibit linear 
dependencies. Assuming a 1 ~ uncertainty in the elements of 
F a pseudorank of 26 was determined (26 of the interaction 
parameters are truly independent) at the 1 ~ level and the 45 
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linearly dependent anhydrous coefficients of Table A4-3 were 
extracted from the anhydrous database. Before discussing the 
quality of the anhydrous data fit we will justify the problem 
pseudorank on more theoretical grounds. 

The solution to the least squares problem suggested by 
Eq. (A4-7), namely finding numerical values for the coef- 
ficients of vec(W) such that the norm of the vector B 
-Fvec (W)  is minimized is given by: 

FT B= Fr F vec(W) 

subject to 

W/j=Wji and W,=0. 

The pseudorank, or number of linearly independent interac- 
tion parameters, is identical to the minimum of the number of 
linearly independent rows or columns of the n 2 by n 2 square 
matrix FTE The matrix FrF can be written as: 

P 
r ~ r  = ~ [(x~ | ~ -  vd2Xi | x~) 

i = l  

 9 ( x  ~, | v, ~ - v,12xf | xT)] 

which reduces to 
P 

r ~ r  = Z x r  | [ (v , -  v]2X3(V~ r -  v]2Xr~ )]. (A4-8) 
i ~ l  

Now the number of independent rows/columns in the inner 
product n by n matrix X~Xr~ cannot be greater than I, i.e. just 
the number that exist in the vector X. The same can be said 
for the inner product matrix (Vi--v]2X3(ViT--v]2X~). Thus 
the direct product 

X , X  r | [(V~ - v]ZX3(V~ r - vi/2Xr)3 

though a matrix of dimensions n z by n 2 possesses no more 
than one independent row/column. Clearly then, the number 
of independent rows/columns in FrF can be no greater than 
the minimum value of p o r  n 2. As there are far more experi- 
ments than variables the pseudorank can at most be n 2. With 
the equality constraints (W~j= W.~, W,=0) it is easy to show . J 
that this reduces to the product n(n-1)/2. The number of 
"active" components (Table 4) is ten and the maximum possi- 
ble pseudorank is 45. 

Now suppose the experimental results used to calibrate 
the W~j's of Eq. (A4-5) were sufficiently similar to be identical 
within analytical uncertainty, i.e. suppose 1,000 experiments 
were performed on the same liquid at the same T, P and fo2, 
all crystallizing one phase, say olivine. Then the pseudorank 
of FTF would be one. One variable, and only one variable, 

Table A4-3. Regression Coefficients (Wij) 

8i408 Ti4Os A116/308  Fe16/308 Fe4Si208 Mn4SizO 8 Mg4Si208 Ca4Si208 Na16/3Si8/308 K16/38i8/308 

Si4Os 
Ti40 8 - 29364.5 
Al16/30 8 -78563.2 -67349.7 
Fe16/30 8 2637.93 -6821.82 1240.32 
F%Si20 s --9630.14 --4594.59 --59528.6 
Mn4Si20 8 5525.36 --2043.20 -- 1917.75 
MggSi20 s --30353.6 1 2 6 7 3 . 6  --48674.8 
Ca~Si20 8 - 64068.1 - 102442 - 98428.3 
Na16/3Sis/30 s --73758.3 -101074 -135615 
K16/3Sis/30 s --87596.4 -40700.7 --175326 
H z O  -411.866 -196.101 -71216.2 

4524.46 
212.196 -703.340 

- 1277.03 -57925.8 
1519.81 --59355.5 

-3717.38 -36966.2 
283.726 --84579.5 

- 103024 7930.96 

--2810.10 
699.123 -78924.5 
780.150 --92611.4 -62779.9 

--60.7241--45162.9 --27908.0 -18129.7 
309.614 -20259.7 --38502.1 --49213.2 --23295.7 

Standard state enthalpy of dissolved H20: --76121.4. Units are calories 



142 

Table A4-4. Regression Statistics 

Anhydrous (step 1) (45 variables, 1160 cases) 
A) Unbounded ANOVA (full rank) 

Sum of Squares Degrees of Freedom 
regression 3.11693 x 10 ~1 45 
residuals 3.06473 x 10 s 1114 
Multiple correlation coefficient: 0.99951 
Residual norm: 17506.4; Standard error: 525 
Absolute value of the minimum 
tolerance used for inclusion: 0.0375 (1% of I[AID 
Pseudorank: 26; Residual norm: 7315.2 

B) Unbounded Anova (rank deficient) 
Sum of Squares Degrees of Freedom 

regression 3.11639 x 1011 26 
residuals 3.59986 x 108 1133 
Multiple correlation coefficient: 0.99884 
Residual norm: 18973.3 ; Standard error: 557 
No Equality constraints 
All variables bounded within the inclusive 
range -500,000 to 500,000 cals. 
Residual norm due to bounding: 0.0 
C) Bounded Anova (rank deficient) {see B above} 

F 
25177 

F 
37724 

Hydrous (step 2) (11 variables, 80 cases) 
A) Unbounded ANOVA (full rank) 

Sum of Squares Degrees of Freedom F 
1.39604 x 1011 11 19790 
4.36089 x t07 68 

Multiple correlation coefficient: 0.99984 
Residual norm: 6603.70; Standard error : 738 
Absolute value of the minimum 
tolerance used for inclusion: 0.0242 (0.5% of II All) 
Pseudorank: 10; Residual norm : 2453.8 

B) Unbounded Anova (rank deficient) 
Sum of squares Degrees of Freedom F 

regression 1.39598 x 1011 10 19408 
residuals 4.96300 x 107 69 
Multiple correlation coefficient: 0.99964 
Residual norm: 7044.9; Standard error: 788 
45 equality constraints (anhydrous coefficients) 
All variables bounded within the inclusive 
range -500,000 to 500,000 cals. 
Residual norm due to bounding: 0.0 
C) Bounded Anova (rank deficient) {see B above} 
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Fig. A4-1. Rank deficiency displayed by the least squares problem 
defined by Eq. (A4-7). The intermittently labeled points correspond 
to the number of orthogonal axes used in the construction of the 
solution vector. The optimal number (the effective pseudorank) 
is chosen such that the residual and solution vector norms are 
simultaneously minimized, thus satisfying the objective of least 
squares while simultaneously insuring parameter stability with re- 
spect to minor perturbations in the database. A pseudorank of 
26 (triangle) was chosen for the anhydrous database and a pseudo- 
rank of 10 was selected for the hydrous detabase. A physical expla- 
nation for this rank deficiency is suggested in the text 

would describe the database. Though this is an extreme exam- 
ple, it emphasizes the need to utilize experimental data on 
widely different liquid compositions involving diverse solid 
phases. We do not believe our deficient pseudorank results 
substantially from this experimental multiplicity. 

Instead let us consider the case where not all the com- 
positional variables (elements of X) are linearly independent. 
Let's label this number m, and note that m_<_ n. Then from Eq. 
(A4-8) with each inner product now possessing no more than 
m independent terms, the pseudorank of FrF becomes at 
most m a, and with Wq= W~i and W~i=0, re(m-i)~2. We have 
already discussed the large uncertainties associated with the 
ferric iron component concentrations and the relatively con- 
stant and unconstrained values for the manganese com- 
ponent. Both components were left in the active set because 
of strong potential for interaction with the other components 
in the liquid, yet they probably should not be treated as 
"truly" independent compositional variables when uncertain- 
ties are taken into account. Removing them, m becomes 8, 
and the predicted pseudorank of FrF becomes 28. This is in 
excellent agreement with that derived using the program of 
Ghiorso (1983) and assuming a 1 ~o data uncertainty. The 
whole problem is best visualized in Fig. A4-1. Here we have 
plotted the norm of the residual vector (the square root of the 
sum of the squares of the actual values of b, Eq. (A4-4), 
minus the predicted ones using the least squares estimates of 
the interaction parameters) against the norm of the solution 
vector (the square root of the sum of the squares of the 
unique elements of vec(W)) as a function of proposed pseu- 
dorank. The object of such a diagram is to demonstrate the 
appropriate problem pseudorank such that the residual norm 
is minimized without making the solution vector norm too 
large (Lawson and Hanson 1974). This insures that the in- 
teraction parameters remain within bounds and are not sub- 
ject to wild fluctuations with minor changes in the database. 
The best choice for the anhydrous database is clearly some- 
where around a pseudorank of 28 as was suggested above. 
By assuming a 1 ~o uncertainty in the elements of F we have 
acheived an optimal least squares solution to Eq. (A4-5) 
which should ensure numerical stability when the model is 
extrapolated throughout the compositional range of natural 
liquids. 

Table A4-4 displays statistics necessary to evaluate the 
quality of the overal anhydrous data fit. The high multiple 
correlation coefficient and total F substantiate the validity of 
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the mathematical model for the free energy of mixing (Eq. 7). 
The standard error in predicting the value of b in Eq. (A4-4) 
is 587 cals and is equivalent to the calculated uncertainties in 
b (largely from the R T l n K  contribution) due to the thermo- 
dynamic database. The regular solution model therefore fits 
the anhydrous experimental database to within the accuracy 
of measurement. 

Table A4-4 also lists statistics pertaining to regression of 
the "hydrous" database. In constructing Eq. (A4-5) for hy- 
drous liquids, terms like R T l n X  w and RTIn(1-X~)(cf .  Eqs. 
(A3-15) and (A3-16)) were added to the dependent variable, b 
(Eq. A4-5), and the regression carried out fixing the anhy- 
drous interaction parameters to the values shown in Table A4- 
3. By simultaneously extracting an enthalpy for dissolved 
H20 , this became an eleven variable problem for which there 
were 80 experimental results. Using the software of Ghiorso 
(1983), a pseudorank of 10 was determined. This is demon- 
strated on Fig. A4-1 where the hydrous point that corre- 
sponds to a pseudorank of eleven would plot off scale to the 
right, but would insignificantly lower the residual norm. The 
hydrous interaction parameters so derived are provided in 
Table A4-3. The standard error of 788 cals given in Table 
A4-4 is due largely to the solid/liquid data and not the water 
solubility measurements. It is still small and of the order of 
magnitude of the uncertainties in the contributing thermody- 
namic data. 
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